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Abstract. Climate change is expected to force many species in arctic regions to migrate and track their climatic 
niche. This requires recruitment from seed, which currently shows very low rates in arctic regions, where long-lived 
and vegetatively reproducing plants dominate. Therefore, we pose the question whether recruitment (germination 
and seedling establishment) in arctic regions will significantly improve in a warmer world, and thus allow species to 
follow their climatic niche. We used a full factorial experiment to examine if realistic warmer temperatures (+3 °C; 
infrared radiation) and increased nitrogen availability (+1.4 g N m−2 year−1) affected germination, seedling survival 
and above- and below-ground seedling biomass in five species common in subarctic regions (Anthoxanthum odora-
tum, Betula nana, Pinus sylvestris, Solidago virgaurea, Vaccinium myrtillus). We found that warming increased seed-
ling emergence in all species, but that subsequent mortality also increased, resulting in no net warming effect on 
seedling establishment. Warming slightly increased above-ground seedling biomass. Fertilization, on the other hand, 
did not influence seedling biomass, but it increased seedling establishment in B. nana while it reduced establishment 
in V. myrtillus. This may help B. nana dominate over V. myrtillus in warmer tundra. Surprisingly, no interactive effects 
between warming and fertilization were found. The lack of a general positive response of seedling establishment 
to warmer and more nutrient-rich conditions suggests that (sub)arctic species may experience difficulties in track-
ing their climatic niche. Predictions of future species distributions in arctic regions solely based on abiotic factors 
may therefore overestimate species’ ranges due to their poor establishment. Also, the opposite response to ferti-
lization of two key (sub)arctic dwarf shrubs, i.e. B. nana and V. myrtillus, could have important implications for the 
future development of arctic plant communities and argues for more research into the role of fertilization for plant 
establishment.
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Introduction
Arctic ecosystems have warmed by between 1 and 4 °C 
since 1960, at a substantially higher rate than other 
biomes (Hansen et  al. 2010; Serreze and Barry 2011), 
and more rapid warming than the global mean is pre-
dicted to continue in the Arctic during this century (IPCC 
2013). This forces many plant species to adapt to their 
changing environment, or to migrate and track their 
climatic niche (Graae et al. 2009; Shevtsova et al. 2009; 
Müller et al. 2011). These processes require sexual repro-
duction, whereas arctic ecosystems are dominated by 
long-lived and vegetatively reproducing plants (Billings 
and Mooney 1968; Bell and Bliss 1980; Totland 1997). 
Therefore, a key question is whether recruitment from 
seed, which is essential for rapid migration, will signifi-
cantly improve under future environmental conditions in 
cold-climate regions.

While several studies indicate that temperature 
increases of 1–3 °C may positively influence a variety of 
reproductive parameters in plants from arctic regions, 
such as flowering phenology, flower biomass, seed pro-
duction and seed viability (Wookey et  al. 1994, 1995; 
Alatalo and Totland 1997; Molau 1997; Molau and Shaver 
1997; Welker et al. 1997; Gugerli et al. 2008; Gugerli and 
Bauert 2011; Klady et al. 2011), it is less clear how seed 
germination and seedling establishment will respond to 
a warmer climate. Germination and seedling establish-
ment are considered major bottlenecks in arctic plant 
life history (Chambers and MacMahon 1994; Clark et al. 
2007; Shevtsova et al. 2009; Graae et al. 2011) and show 
very low rates under field conditions. For instance, in 
Canadian high-arctic tundra first-year germination of 10 
species was only 4 % on average (Bell and Bliss 1980), 
and in subarctic Sweden average seedling emergence 
of 17 species was 7.5 %, and their subsequent mortal-
ity rate 80  % (Milbau et  al. 2013). Graae et  al. (2011) 
observed germination rates of 0.9 % in undisturbed and 
11 % in disturbed subarctic tundra vegetation, averaged 
over 10 species, and under high-arctic conditions on 
Svalbard germination in outdoor conditions was gen-
erally below 5  %, compared to c. 80  % under optimal 
lab conditions for the same seed source (Müller et  al. 
2011). These low success rates are often attributed to 
low temperatures, low nutrient availability and a short 
growing season (Billings and Mooney 1968; Bell and Bliss 
1980; Molau and Larsson 2000), although also other 
abiotic (e.g. water, light, soil structure) and biotic (e.g. 
competitors, pathogens, predators) factors are known 
to influence the post-dispersal establishment of seed-
lings (Fenner 2000; Clark et  al. 2007; Klanderud 2010; 
Eckstein et al. 2011; Graae et al. 2011; Müller et al. 2011; 
Soudzilovskaia et al. 2011; Milbau et al. 2013).

Climate warming is expected to alleviate some of the 
physiological constraints seeds and seedlings experi-
ence in cold environments, but knowledge about the role 
of climate warming for germination and seedling sur-
vival in arctic species solely derives from controlled lab 
studies, or outdoor studies on bare soil (but see Hobbie 
and Chapin 1998). Most lab studies thus far have indi-
cated improved germination of (sub)arctic seeds under 
warmer conditions (Bell and Bliss 1980; Graae et  al. 
2008; Milbau et al. 2009; Müller et al. 2011), although the 
applied warming has often been more than what can 
be expected by climate change. Field studies on bare 
soil, on the other hand, showed a reduction in recruit-
ment success due to warming. For instance, Graae 
et  al. (2009) found reduced germination and seedling 
establishment in Polygonum vivparum and Saxifraga 
cernua when exposed to elevated temperatures (+2 to 
+8  °C), and also Shevtsova et  al. (2009) observed that 
warming with 3  °C reduced seedling establishment in 
several important subarctic species. Because of the 
bare soil, this could have been caused by heat stress 
(Graae et al. 2009). In contrast, the only study we know 
of that studied germination in intact arctic plant com-
munities showed that air warming by 1 °C doubled the 
amount of germination in five tree species (Hobbie and 
Chapin 1998). Recent seed addition studies using natu-
ral temperature and precipitation gradients in Southern 
Norway, in alpine systems largely comparable to our 
subarctic study site, indicated higher species emergence 
of both trees (Tingstad et al. 2015) and alpine species 
(Klanderud et  al. 2017) in cold alpine than in warmer 
subalpine and boreal sites, suggesting that low temper-
atures were not limiting recruitment. However, it should 
be noted that in gradient studies like these, the effect of 
temperature cannot be separated from other co-varying 
factors.

Next to temperature, also the availability of nutrients 
is expected to increase in arctic regions. This is due to 
faster mineralization of soil organic matter in a warmer 
climate (Rustad et  al. 2001; Buckeridge and Grogan 
2008; Baptist et  al. 2010) and increased atmospheric 
nitrogen deposition (Langner et  al. 2005; Kühnel et  al. 
2011, 2013). Low nutrient levels have been shown to 
limit plant reproduction (Wookey et  al. 1995) and the 
growth and survivorship of seedlings (Hobbie and Chapin 
1998) in tundra sites. For instance, fertilization increased 
flower density, number of seeds per flower and seed 
weight in Dryas octopetala on Svalbard (Wookey et  al. 
1995), and likewise improved the growth of seedlings of 
Betula glandulosa at the forest-tundra ecotone (Paradis 
et al. 2014). In addition, nitrogen and especially nitrate 
are known to stimulate germination in a variety of 
species (Bewley and Black 1982; Hilhorst and Karssen 
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1992; Baskin and Baskin 1998), and some species are 
even absolutely dependent on the presence of nitrate 
to germinate (Bouwmeester et al. 1994). It is, however, 
unclear whether nitrogen also improves germination 
and seedling survival in plants growing in nutrient-poor 
arctic environments. Also, the interactive effects of 
nitrogen addition and warming on early plant life stages 
in arctic environments remain to be examined.

In the current study, we explore how two important 
components of global change, warmer temperatures 
and increased nitrogen availability, influence seedling 
emergence, growth and establishment in subarctic 
tundra in northern Sweden. Specifically, we added five 
species common to the subarctic, as seeds and as pre-
grown seedlings, to extant tundra communities and 
examined the effects of warming (infrared radiation, 
Free Air Temperature Increase [FATI]) and fertilization 
and their interactions on germination (amount and tim-
ing), seedling survival and above- and below-ground 
seedling biomass. Because of the generally positive 
effects of temperature and nitrogen on germination 
and plant growth (Hilhorst and Karssen 1992; Parsons 
et  al. 1994; Baskin and Baskin 1998; Arft et  al. 1999; 
Probert 2000), we expect germination and seedling 
establishment to improve under a realistic scenario of 
warmer and more nutrient-rich conditions in subarc-
tic tundra. We also expect fertilization to reinforce the 
positive effect of warming on seedling growth, because 
increased plant biomass in response to warming should 
increase plant nitrogen demand (An et al. 2005). By using 
the FATI technique, we could test our hypotheses under 
strictly controlled temperature regimes in identical plant 
communities, thereby excluding confounding factors as 
opposed to most other types of outdoor warming stud-
ies (i.e. open top chambers or natural gradient studies).

Methods
Site description
The study was performed in a typical subalpine tundra 
site at 418 m a.s.l. in Abisko, Swedish Lapland (68°21′N, 
18°49′E). The climate in the region is subarctic mon-
tane, with a growing season length of c. 3 months, 
from mid-June to early-mid September (Molau et al. 
2005). Climate data from the nearby Abisko Scientific 
Research Station (385 m a.s.l.; 1961–90) indicate a 
mean annual temperature of −0.8 °C and a mean 
July temperature of 11 °C. Average annual precipita-
tion (1980–99) is 304 mm, of which approximately 
one-third falls during the summer. Common vascular 
plant species at the study site were Empetrum her-
maphroditum, Vaccinium uliginosum, Carex bigelowii, 
Andromeda polifolia and Rhododendron lapponicum.  

The soil was a gelic gleysol with a well-developed, at 
least 10 cm deep, humus layer on a bedrock of base-rich 
mica schist.

Study species and plant material
We selected five species: Anthoxanthum odoratum 
(grass), Betula nana (dwarf shrub), Pinus sylvestris 
(tree), Solidago virgaurea (forb) and Vaccinium myrtil-
lus (dwarf shrub). They represent a range of functional 
types, are known to respond to warming (Parsons et al. 
1994; Walker et al. 2006; Milbau et al. 2009; Shevtsova 
et al. 2009) and are important components of subarc-
tic plant communities. The dwarf shrubs included an 
early (B. nana) and a late (V. myrtillus) germinating spe-
cies (Milbau et al. 2009). All species are abundant in the 
study area, apart from P. sylvestris, which occurs spo-
radically, but is expected to expand its range to more 
northern latitudes (Matías and Jump 2014).

We used both seeds (‘seed sowing study’) and pre-
grown seedlings (‘seedling planting study’) to test how 
different early life stages were affected by warming and 
nitrogen addition. Due to space restrictions related to 
the use of the infrared warming technique, germination 
could only be studied in three out of the five species. 
Seeds for the seed sowing study (B.  nana, S.  virgaurea 
and V. myrtillus) were collected between 15 August and 
15 September 2008 in the Abisko area (68°21′N, 18°49′E), 
stored dry for c. 4  months and then stratified for 20 
weeks on wet filter paper at 0.5 °C until sowing. For the 
seedling planting study, the same seed sources as for 
the seed sowing study were used. Additionally, seeds of 
A. odoratum were collected in the Abisko area in autumn 
2008 and seeds of P. sylvestris were ordered from a seed 
company in Karesuando (68°20′N, 21°53′E), thus origi-
nating from a similar latitude. From 15 October 2008, 
the seeds were stratified on moist filter paper at 0.5 °C 
for 20 weeks. Afterwards, they were put in temperatures 
of 20/10 °C 12/12 h to stimulate germination and once 
germinated they were planted in meadow soil collected 
in the study area, and grown for 3 months at 18/10 °C 
12/12  h. Before planting them in the outdoors experi-
ment (7 June), the length of the three largest leaves 
on each individual was measured as a non-destructive 
measure for initial plant size.

Experimental design
We selected three pairs (blocks) of plots with similar 
species composition in meadow vegetation, and per pair 
we assigned one plot to an ambient and one to a warm-
ing (+ 3 °C) treatment (Fig. 1). Each plot was 40 × 50 cm 
and 2 m apart from the other plot in the same pair. 
The different pairs were at least 10 m apart. Each plot 
was further split into two subplots (each 40  ×  25  cm) 



Milbau et al. – Effects of warming and N addition on seedling establishment in tundra

AoB PLANTS https://academic.oup.com/aobpla © The Authors 20174

of which one was assigned to a control and one to a 
nitrogen addition treatment. The division was made by 
a Plexiglass plate, inserted in the soil to a depth of 15 
to 20  cm to prevent the fertilizer from spreading into 
the adjacent subplot. The majority of roots in the study 
area are situated in the upper 10  cm of soil (Jackson 
et  al. 1996; Iversen et  al. 2015). Species composition 
and cover in each subplot were estimated on 24 July.

Within each subplot we created 16 small gaps of 3 cm 
diameter, evenly dispersed over the subplot surface. We 
randomly assigned 10 gaps to the five species used in 
the seedling planting study (two gaps per species; here-
after ‘seedling gaps’). The other six gaps were assigned 
to the three species of the seed sowing study (two gaps 
per species; hereafter ‘seed sowing gaps’). On 7 June, 
one seedling was planted per seedling gap and 30 seeds 
were added to each seed sowing gap.

Heating treatment
Heating was achieved under field conditions in the 
absence of enclosure (e.g. open top chambers), using 
the FATI technique (Nijs et al. 1996, 2000). Each of the 
three heated plots was equipped with a set of irradiation 

sources, suspended above the plot from the north side 
and irradiating the plots by a computer-controlled, 
modulated flux density of infrared radiation (0.8–3 μm). 
The equipment was set to yield a continuous increase 
of the vegetation surface temperature of ~3 °C above 
ambient. Each of the three control plots served as a sys-
tem control and had a ‘dummy’ FATI unit without lamps, 
to create similar obstruction of radiation when the sun 
was in the north. Surface temperature was measured 
in each plot with non-contact semiconductor sensors 
(‘infracouple’, type OS39-MVC-6; Omega Engineering, 
Stamford, CT, USA). Additionally, air temperature at 
5 cm above the soil surface and soil temperatures at 
2.5, 7.5 and 10 cm depth were measured in each plot 
with NTC-thermistors (EC95; Thermometrics, Edison, 
NJ, USA). These data were recorded every 30 min (DL2E 
data logger; Delta T, Cambridge, UK). Soil volumetric 
water content in the top 5 cm soil layer was measured 
every minute and mean values per hour were stored on 
an hourly basis (EC-5 soil moisture sensors and Em50 
data loggers; Decagon Devices, Pullman, WA, USA). The 
heating treatment started on 8 June and ended on 21 
August 2009, which represents the total duration of the 
experiment.

Figure 1. Overview of the experimental design. The experiment consisted of three pairs (blocks) of plots, of which one plot per pair was 
assigned to a warming treatment (+3 °C) by means of infrared irradiation. Each plot was further divided into two subplots by a Plexiglass 
plate (dashed line), and one subplot per plot was assigned to a nitrogen addition treatment (‘+N’: fertilized with N; ‘−N’: no fertilizer added). 
Each subplot contained 16 3-cm diameter gaps, evenly distributed over the area. We assigned two gaps per species (Betula nana, Solidago 
virgaurea and Vaccinium myrtillus) to the seed sowing study (‘seed sowing gaps’; grey) and two gaps per species (Anthoxanthum odoratum, 
B. nana, Pinus sylvestris, S. virgaurea and V. myrtillus) to the seedling planting study (‘seedling gaps’; white). At the start of the experiment, we 
added 30 seeds of the assigned species to each seed sowing gap and we planted one pre-grown seedling in each seedling gap.
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Nitrogen addition treatment
We added fertilizer to an amount of 1.4 g N m−2 year−1. 
This amount was chosen to represent realistic future lev-
els of N in subarctic tundra ecosystems as a result of 
increased mineralization (Zamin and Grogan 2012) and 
elevated atmospheric N deposition (Granath et al. 2009). 
We added fertilizer on four occasions: 8 June, 30 June, 
20 July and 11 August by adding each time 0.35 g N m−2 
as NH4NO3 in aqueous solution (2.5  L water per m2 of 
fertilized area). The same amount of water was added 
to the non-fertilized subplots.

On 8 June, we inserted three resin capsules (PST-1; 
Unibest, Bozeman, MT, USA) per subplot to test if the fer-
tilization treatment was successful in increasing the bio-
available amounts of NO3

− and NH4
+, and if heated and 

non-heated plots differed in nutrient availability. The 
capsules were retrieved at the end of the experiment, 
on 21 August, and were extracted by shaking them 
three times for 30 min with 10 mL of a 2 M KCl solution 
(30 mL of KCl in total). The KCl extractable concentra-
tions of NO3

− and NH4
+ were subsequently determined 

by means of flow injection analysis (FIAstar 5000; FOSS 
NIRSystems, MD, USA).

Plant measurements
The number of emerged seedlings and their survival, in 
addition to the survival of the transplanted seedlings, 
were recorded every fifth day throughout the duration 
of the experiment (8 June until 21 August).

The calculated recruitment data for the seed sow-
ing study were: total seedling emergence proportion 
(cumulative number of emerged seedlings/number of 
sown seeds; referred to as ‘seedling emergence’ here-
after), seedling mortality proportion (number of dead 
seedlings/number of germinated seeds; referred to as 
‘seedling mortality’ hereafter) and seedling establish-
ment proportion at the end of the experiment (number 
of survived seedlings/number of sown seeds; referred 
to as ‘seedling establishment’ hereafter). To study the 
effects of the treatments on speed of germination, we 
estimated mean germination time (MGT), which was 
calculated as: 

MGT =
1

n t / Ni i

i

∑
with ni the number of seeds that germinated within 
consecutive intervals of time, ti the time between the 
beginning of the test and the end of a particular inter-
val of measurement, and N the total number of seeds 
that germinated (Deines et al. 2007; Milbau et al. 2009). 
For the seedling planting study, we calculated the final 
proportion of surviving seedlings of the pre-grown seed-
lings that were planted at the onset of the experiment 

(number of survived seedlings/number of planted seed-
lings: referred to as ‘seedling survival’ hereafter).

On 21 August, we collected the above-ground bio-
mass of the emerged seedlings, and the above- and 
below-ground biomass of the transplanted seedlings. All 
biomass was oven-dried at 70 °C for 48 h before weigh-
ing. Because the emerged seedlings were still very tiny 
after 2  months of growth in subarctic conditions, and 
therefore the handling error large, we only used biomass 
data of the transplanted seedlings in our analyses.

Statistical analyses
The design of this study was a split-split plot experiment 
with the main plots arranged in a randomized complete 
block design with three random blocks. Fertilization was 
applied as a split-plot factor and species represented 
the split-split plot level (Fig. 1). In the analyses, we used 
mean values of the two observations per species in each 
subplot to prevent pseudo-replication.

The responses of the recruitment characteristics to 
the warming and fertilization treatments were tested 
by means of linear mixed models. Prior to analyses, 
all recruitment characteristics were square root-trans-
formed and all biomass data log-transformed to obtain 
a normal distribution and homogeneity of variance. 
For recruitment, we consecutively tested models with 
seedling emergence, seedling mortality, seedling estab-
lishment and MGT as dependent variables. The models 
included warming, fertilization, species, and all their 
two-way and three-way interactions as fixed effects 
and block, block × warming, block × warming × fertilizer 
as random effects. For the seedling planting study, simi-
lar models were created for shoot, root and total bio-
mass and for survival of the planted seedlings. Here, we 
additionally included seedling leaf length at the onset 
of the experiment as a fixed factor to correct for initial 
differences in seedling size. Differences among means 
were further analysed by pairwise comparisons, using 
least significant differences. For ease of interpretation, 
untransformed values for means are presented in the 
figures.

To examine if plant-available amounts of nitrogen 
varied between fertilization and warming treatments we 
ran two linear mixed models, one for ammonium and 
one for nitrate. Warming, fertilization and their inter-
action were included as fixed effects in the model and 
block and block × warming as random effects. Nutrient 
concentrations were log-transformed prior to analyses.

We also examined if soil moisture was influenced 
by the warming treatments. Data were analysed by 
means of a general linear model with soil moisture as 
dependent variable and heating, month and block as 
fixed factors. A Tukey HSD test was used to compare 
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differences between months. All analyses were done 
with SPSS 21.

Results
Environmental measurements
Average ambient surface temperatures (n = 3920), rep-
resenting the seedling environment, were 13.7  ±  SD 
7.5, 14.1  ±  6.6 and 12.4  ±  6.9 in the three ambient 
plots, with maximum absolute values of 38.8, 35.6 and 
37.1 °C and minimum absolute values of −3.0, −2.2 and 
−3.3  °C, respectively. By means of the FATI technique, 
these surface temperatures were continuously elevated 
by 2.8 ± SD 0.3, 2.9 ± 0.8 and 2.8 ± 0.3 °C, respectively 
(n = 3920, non-contact semiconductor measurements), 
in the three heated plots of each plot pair. The tem-
perature increase was thus close to the 3  °C we had 
aimed for.

Air temperatures were hardly affected by the heat-
ing treatment (+0.22  ±  SD 0.55  °C; averaged over the 
three plots), whereas soil temperatures were on aver-
age increased by 1.6 ± SD 0.4, 1.0 ± 0.3 and −0.1 ± 0.3 °C 
at 2.5, 7.5 and 15 cm depth, respectively, in the heated 
compared to the ambient plots. Interestingly, volu-
metric water content in the top soil layer was slightly 
higher in the heated (0.45 m3 m−3) than the ambient 
(0.40 m3 m−3) plots (F1,  11798  =  1292.76, P  <  0.001; see 
Supporting Information—Fig. S1). It decreased signifi-
cantly (F2, 11798 = 2940.99, P < 0.001) from June (0.47 m3 
m−3) to July (0.44 m3 m−3) and August (0.36 m3 m−3; see 
Supporting Information—Fig. S1). In addition, there 
was a significant effect of ‘block’ (F2,  11798  =  2038.29, 
P  <  0.001), indicating that soil moisture content was 
affected by the location of the plot pair.

Fertilization resulted in an almost 10-fold increase 
in plant-available amounts of NO3

− in the soil, and dou-
bled the availability of NH4

+ (F1, 32 = 22.28, P < 0.001 and 
F1, 32 = 43.11, P < 0.001 for NH4

+ and NO3
−, respectively), 

whereas warming had no significant effect on N avail-
ability (F1, 32 = 2.13, P = 0.154 and F1, 32 = 1.20, P = 0.282 for 
NH4

+ and NO3
−, respectively; Fig. 2). The increase in bioa-

vailable nutrients was however more pronounced in the 
ambient than the heated plots, which was reflected in a 
nearly significant interaction between warming and fer-
tilization (F1, 32 = 3.42, P = 0.074 and F1, 32 = 3.62, P = 0.066 
for NH4

+ and NO3
−, respectively; Fig. 2).

Effects of warming on germination and seedling 
establishment
Warming significantly increased seedling emergence 
(39 % in heated vs. 22 % in ambient plots), independent 
of species and fertilization treatment, but did not affect 

seedling establishment in any of the species (Fig.  3A 
and B; Table 1). The latter was the result of significantly 
higher seedling mortality rates in the heated com-
pared to the ambient plots (32 % vs. 19 %, respectively; 
Fig. 3C; Table 1). In the seedling planting study, warming 
increased above-ground biomass (8.3 mg in heated vs. 
6.9  mg in ambient plots; Fig.  4A; Table  2), but had no 
effect on root biomass (15 mg in heated vs. 13.6 mg in 
ambient; Fig. 4B; Table 2) nor on total biomass (23.2 mg 
in heated vs. 20.4  mg in ambient; Fig.  4C; Table  2). 
Survival of the planted seedlings was not affected by the 
warming treatment (85 % vs. 78 % in heated and ambi-
ent plots, respectively; Fig. 4D; Table 2).

The species differed in germination time, with V. myr-
tillus germinating significantly later than the other two 
species (Fig.  3D; MGT  =  30, 31 and 50  days for S.  vir-
gaurea, B. nana and V. myrtillus, respectively). Analyses 
per species (significant warming × fertilization × species 
interaction; Table  1) indicated that warming reduced 
the germination time in S. virgaurea, from 36 to 24 days 
(F1, 4 = 7.86, P = 0.049), and that there was a similar pat-
tern in V. myrtillus (from 55 to 46 days), albeit not sig-
nificant (F1, 4 = 4.261, P = 0.109). For B. nana, no effect 
of warming on MGT could be detected (F1,  4  =  0.256, 
P = 0.640).

Effects of nitrogen addition on germination and 
seedling establishment
The effects of fertilization on recruitment were species-
specific and independent of warming (Fig.  3A and B; 
Table 1). Fertilization improved both seedling emergence 

Figure 2. Amounts of nitrate (NO3
−) and ammonium (NH4

+) (means ± 
1 SE) absorbed per resin capsule (three resins per plot) over the course 
of the experiment in the different treatments (ambient, heated, 
unfertilized and fertilized).
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and establishment in B. nana (F1, 15 = 10.85, P = 0.005 and 
F1, 13 = 8.50, P = 0.012 for emergence and establishment, 
respectively), had no effect in S. virgaurea (F1, 15 = 0.044, 
P = 0.835 and F1, 13 = 0.144, P = 0.710) and reduced seed-
ling establishment in V. myrtillus (F1, 15 = 2.256, P = 0.154 
and F1, 13 = 5.722, P = 0.032). N addition did neither influ-
ence seedling mortality, nor the timing of germination 
(Fig. 3C and D; Table 1).

N addition, in contrast to warming, had no effect on 
any of the biomass measures in the seedling experiment 
(Fig. 4; Table 2), neither was survival of the planted seed-
lings influenced by fertilization. Survival depended only 
on species and initial seedling size (Table 2). Whereas all 
seedlings of P. sylvestris survived, B. nana and V. myrtil-
lus had the lowest survival rates with 62.5 % and 66.7 % 
survival, respectively.

Figure 3. Responses (means ± 1 SE) of (A) seedling emergence, (B) seedling establishment, (C) seedling mortality and (D) MGT of the added 
seeds (seed sowing study) to the heating and nitrogen addition treatments. Grey bars indicate plots at ambient temperatures, and black 
bars indicate heated plots (+ 3 °C). ‘−N’ indicates no fertilizer added, and ‘+N’ indicates N addition. bn = Betula nana; sv = Solidago virgaurea; 
vm = Vaccinium myrtillus.
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Discussion

Effects of warming on germination and seedling 
establishment
Seedling emergence increased in response to a tem-
perature rise of 2.8  °C, which was consistent with our 
expectations and with several lab studies (Bell and Bliss 
1980; Graae et al. 2008; Milbau et al. 2009; Müller et al. 
2011). Surprisingly, this positive effect was counteracted 
by higher seedling mortality in the heated compared to 
the ambient plots, resulting in no net warming effect on 
seedling establishment. As warming generally stimu-
lates growth in arctic and alpine species (e.g. Parsons 
et  al. 1994; Arft et  al. 1999) we would have expected 
the opposite. Potentially, the observed higher mortal-
ity in the heated plots was the result of an indirect, 
rather than a direct effect of warming. The most obvi-
ous option would be drought, but the measured higher 
moisture content in the topsoil layer (upper 5 cm) of the 
heated compared to the ambient plots [see Supporting 
Information—Fig. S1] refutes this, although the possi-
bility of drought directly at the soil surface cannot be 
excluded. Surface drought could be especially impor-
tant straight after seedling emergence. Other alterna-
tives are improved conditions for pathogens (Bebber 
et al. 2013) or increased competition, e.g. for light and 
nutrients, from the resident vegetation (Klanderud and 
Totland 2007; Olsen and Klanderud 2014). The latter is 
very likely as moderate warming generally increases 
above-ground production and plant height in tundra 
communities (Walker et al. 2006).

Although warming neither influenced first-year seed-
ling establishment, nor the survival of planted seed-
lings, it did improve seedling growth (Fig.  4). This was 

according to our expectations, and could be important 
for over-winter survival. Due to the short growing season 
in arctic regions (~3 months in Abisko; Molau et al. 2005), 
gaining critical biomass and sufficient carbon reserves 
during the first growing season is essential to survive 
the long-lasting and harsh winter, and thus reach the 
following growing season (Stocklin and Baumler 1996; 
Schütz 2002). Seedlings grown under warmer condi-
tions, thereby reaching higher biomass, are accordingly 
expected to have higher survival rates. Similarly, we 
expect that the observed earlier germination in S.  vir-
gaurea and V. myrtillus as a response to warming, and the 
therefrom resulting longer growing season, will improve 
these species’ chances for long-term survival. However, 
due to the short duration of our experiment, we should 
be careful with drawing long-term conclusions.

Effects of nitrogen addition on germination and 
seedling establishment
Responses to fertilization were species-specific. 
Nitrogen addition had a positive effect on both seed-
ling emergence and seedling establishment in B. nana, 
no effect in S. virgaurea and a negative effect in V. myr-
tillus. The potential role of nitrogen, and especially 
nitrate, as a stimulator of seed germination is known 
(Bewley and Black 1982; Hilhorst and Karssen 1992; 
Baskin and Baskin 1998), but to our knowledge the 
mechanisms of action still need to be elucidated and 
studies thus far have mainly focussed on commer-
cially interesting plant species. Consequently, we can-
not explain why the three species used in this study 
showed contrasting germination responses to nitrogen 
fertilization and argue that more research on the role 
of nutrients for seedling emergence in arctic and alpine 
ecosystems is needed.

Table 1. Effects of warming, fertilization and species identity on seedling emergence, seedling mortality, seedling establishment and MGT 
of seeds sown in extant subarctic meadow communities at the onset of the treatments. Analyses were performed by means of linear mixed 
models. P-values < 0.05 are in bold. Seedling emergence, seedling mortality and seedling establishment were square root-transformed before 
analyses.

Source of variation Seedling emergence Seedling mortality Seedling establishment MGT

Fd.f. P Fd.f. P Fd.f. P Fd.f. P

Warming (W) 8.831, 6 0.025 7.511, 6 0.034 4.371, 2 0.172 4.551, 2 0.167

Fertilization (F) 0.481, 6 0.516 0.011, 6 0.918 0.191, 4 0.688 0.491, 4 0.523

Species (S) 16.142, 16 <0.001 2.302, 16 0.133 11.802, 16 <0.001 66.442, 16 <0.001

W × F 2.071, 6 0.200 3.151, 6 0.126 4.941, 4 0.090 0.281, 4 0.627

W × S 1.262, 16 0.311 2.632, 16 0.103 0.542, 16 0.592 3.122, 16 0.072

F × S 9.882, 16 0.002 2.122, 16 0.152 9.132, 16 0.002 0.092, 16 0.912

W × F × S 0.112, 16 0.900 0.242, 16 0.790 0.552, 16 0.587 3.632, 16 0.049
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The finding that fertilization with realistic nitrogen 
levels affected seedling establishment of B.  nana and 
V.  myrtillus, two co-dominant deciduous dwarf shrubs 
in subarctic tundra, in opposite ways, may have impor-
tant consequences for future community development, 
as better seedling establishment under richer soil con-
ditions could help B.  nana dominate over V.  myrtillus 
under future conditions. This result is in accordance with 
data from observational studies showing a substantial 
increase in abundance of B.  nana in subarctic tundra 
over the last decades (Olofsson et  al. 2009; Rundqvist 
et  al. 2011) in contrast to no changes in V.  myrtillus 
(Olofsson et al. 2009).

Contrary to our expectations, fertilization did not 
increase seedling biomass. This may be related to the 
relatively low amounts of nitrogen added. Whereas fer-
tilization studies in arctic environments regularly use 
amounts of up to 10 g N m−2 (e.g. Michelsen et al. 1996; 
Press et  al. 1998), which typically result in clear plant 
responses, we only added 1.4  g m−2 to simulate more 
realistic changes in N availability (see also Zamin and 
Grogan 2012). Potentially, the young seedlings failed to 
successfully take up the added N in competition with 
the soil microbial community and the extant vegetation 
in this N-limited tundra ecosystem (Mack et  al. 2004; 
Elser et  al. 2007). Alternatively, increased N uptake by 

Figure 4. Responses (means ± 1 SE) of (A) shoot biomass, (B) root biomass, (C) total biomass and (D) survival of the transplanted seedlings 
(seedling planting study) to the heating and nitrogen addition treatments. Grey bars indicate plots at ambient temperatures, and black bars 
indicate heated plots (+ 3 °C). ‘−N’ indicates no fertilizer added, and ‘+N’ indicates N addition. ao = Anthoxanthum odoratum; bn = Betula nana; 
ps = Pinus sylvestris; sv = Solidago virgaurea; vm = Vaccinium myrtillus.
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the seedlings could have resulted in higher tissue N con-
centrations (not measured) rather than growth, as is 
regularly seen in high-latitude regions, where biomass 
responses of plants to N addition are often limited (Xia 
and Wan 2008).

We did not observe an interactive effect among 
warming and N addition in this study. We had expected 
a stronger fertilization effect in the heated compared to 
the ambient plots because increased plant biomass in 
response to warming should increase plant N demand 
(An et  al. 2005). However, the complete lack of any N 
effect on seedling growth suggests either that seedling 
growth was not N-limited, or that the seedlings could 
not access the added N, but the exact reason cannot be 
revealed here. Interestingly, plant-available nutrients 
(measured by means of resin capsules) in the fertiliza-
tion treatment were lower in the heated than ambi-
ent plots (Fig. 1) suggesting an increased uptake of the 
added N by the extant plants and/or the soil microbial 
community in the heated plots.

Implications of our findings
In general, neither warming, nor N addition, had a strong 
positive effect on seedling establishment in this tundra 
ecosystem. Although seedlings obtained higher above-
ground biomass when grown in a warmer environment, 
none of the treatments increased the number of seed-
lings by the end of the summer. The only exception was 
B. nana, in which fertilization, but not warming, resulted 
in more seedlings.

The lack of a general increase in seedling establish-
ment under warmer and/or more fertile conditions may 
have important consequences for future tundra commu-
nity composition. The current low recruitment numbers 

in these ecosystems (Bell and Bliss 1980; Graae et  al. 
2011; Müller et al. 2011; Milbau et al. 2013), and the lack 
of improvement under future environmental conditions 
as indicated in this study, suggest that many species 
common to subarctic environments will only be able to 
migrate slowly, due to poor germination and seedling 
establishment. If colonization by recently expanding 
or invading species occurs faster than resident species 
are able to disperse to new sites, competitively weak 
species might disappear due to the increased role of 
competition from the newcomers (Grabherr et al. 1995; 
Gottfried et al. 1999; Kueffer et al. 2013). This already 
seems to happen in certain alpine areas, where a num-
ber of alpine species have decreased in abundance, 
although plant species richness has generally increased 
(Klanderud and Birks 2003). Similarly, in subarctic eco-
systems, alien species have been shown to successfully 
invade alpine plant communities (Lembrechts et  al. 
2014). To better understand why temperate species 
are successful in these cold environments, an interest-
ing focus for future studies could be whether recruit-
ment success in cold areas and its response to warming 
differs between arctic, boreal and temperate species, 
the latter generally being better adapted to sexual 
reproduction.

Our findings may also be informative for species dis-
tribution models. The current study shows empirically 
that in (sub)arctic environments, even under warmer 
and more nutrient-rich conditions, establishment from 
seed remains limited. The prediction of future species 
distributions solely based on abiotic factors (Guisan 
and Zimmermann 2000; Randin et  al. 2009) may 
therefore overestimate future species’ ranges, not 
taking into account poor plant establishment in cold 

Table  2. Effects of warming, fertilization and species identity on shoot, root and total biomass, and on survival of pre-grown seedlings 
planted in extant subarctic meadow communities at the onset of the experiment. Analyses were performed by means of linear mixed models. 
P-values < 0.05 are in bold. All biomass data were ln-transformed before analyses. To correct for differences in initial seedling size at the time 
of planting, leaf length was added as a fixed factor in the model.

Source of variation Shoot biomass Root biomass Total biomass Seedling survival

Fd.f. P Fd.f. P Fd.f. P Fd.f. P

Warming (W) 8.191, 7 0.023 1.201, 4 0.335 1.891, 4 0.242 0.431, 4 0.548

Fertilization (F) 0.191, 7 0.676 3.161, 26 0.087 2.381, 26 0.135 0.071, 27 0.792

Species (S) 44.244, 25 <0.001 10.874, 27 <0.001 16.154, 27 <0.001 2.884, 28 0.041

W × F 0.161, 8 0.697 1.881, 26 0.182 0.781, 26 0.384 0.501, 27 0.487

W × S 0.834, 24 0.517 1.074, 26 0.393 0.874, 27 0.495 0.534, 27 0.715

F × S 0.424, 24 0.795 0.594, 26 0.672 0.724, 26 0.589 0.124, 27 0.973

W × F × S 0.824, 24 0.528 0.844, 26 0.512 0.624, 26 0.656 1.904, 27 0.138

Leaf length 19.881, 29 <0.001 5.181, 27 0.031 8.381, 28 0.007 5.401, 30 0.027
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regions. The inclusion of realistic establishment values 
in models for predicting range shifts in arctic environ-
ments may be a way to overcome this. Moreover, we 
suggest using ‘establishment limitation’ instead of 
‘dispersal limitation’ (Engler et  al. 2009) in relation 
to arctic plant migration, given that the mean dis-
persal distance estimated for arctic plants is 570 km 
(Hoffmann 2012), whereas establishment seems to be 
a larger bottleneck.

Lastly, we found important interspecific differences 
in germination and establishment responses to fertili-
zation. As these concern dominant species in subarctic 
regions, i.e. B. nana and V. myrtillus, and we currently 
cannot explain why they responded differently, we 
argue for more research into the role of fertilization for 
germination and seedling establishment of northern 
species. The observed interspecific differences should 
also be taken into account when making predictions 
of (sub)arctic community responses to a changing 
climate.
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