PAS-GEBIEDSANALYSE in het kader van herstelmaatregelen voor BE2400010 Valleigebied tussen Melsbroek, Kampenhout, Kortenberg en Veltem

Jan Wouters, Piet De Becker en Arno Thomaes

INSTITUUT NATUUR- EN BOSONDERZOEK
Het Instituut voor Natuur- en Bosonderzoek (INBO) is het Vlaams onderzoeks- en kenniscentrum voor natuur en het duurzame beheer en gebruik ervan. Het INBO verricht onderzoek en levert kennis aan al wie het beleid voorbereidt, uitvoert of erin geïnteresseerd is.

Vestiging:
INBO Brussel
Herman Teirlinckgebouw, Havenlaan 88 bus 73, B-1000 Brussel
www.inbo.be

e-mail:
jan.wouters@inbo.be

Wijze van citeren:
DOI: doi.org/10.21436/inbor.14017969
D/2018/3241/100
Rapporten van het Instituut voor Natuur- en Bosonderzoek 2018 (35)
ISSN: 1782-9054

Verantwoordelijke uitgever:
Maurice Hoffmann

Foto cover:
Een groepje herfsttijloos (Kastanjebos), Vilda/J. Mentens

Dit onderzoek werd uitgevoerd in opdracht van:
Vlaams minister van Omgeving, Natuur en Landbouw

Dankwoord:
Met dank aan al de INBO, ANB en VITO-collega's die hebben bijgedragen aan de totstandkoming van dit rapport.

© 2018, Instituut voor Natuur- en Bosonderzoek
PAS-GEBIEDSANALYSE IN HET KADER VAN
HERSTELMAATREGELEN VOOR
BE2400010
Valleigebied tussen Melsbroek, Kampenhout,
Kortenberg en Veltem
Jan Wouters, Piet De Becker, Arno Thomaes

Rapporten van het Instituut voor Natuur- en Bosonderzoek 2018 (35)
doi.org/10.21436/inbor.14017969
Inhoudstafel

Leeswijzer .. 6
1 Bespreking op niveau van de volledige SBZ-H ... 13
 1.1 Situering .. 13
 1.2 Samenvattende landschapsecologische systeembeschrijving .. 13
 1.3 Opdeling in deelzones ... 15
 1.4 Aangewezen en tot doel gestelde soorten van het Natuurdecreet (Bijlage II, III en IV) waarop de voorgestelde maatregelen mogelijk impact hebben ... 16
2 Deelzone Torfbroek (2400010_A) ... 18
 2.1 Uitvoeriger landschapsecologische systeembeschrijving ... 18
 2.1.1 Topografie - hydrografie .. 18
 2.1.2 Bodem ... 19
 2.1.3 Geohydrologie ... 19
 2.1.4 Grondwaterrodynamiek .. 20
 2.1.5 Grondwaterchemie ... 21
 2.1.6 Oppervlaktewater .. 22
 2.1.7 Vegetatiezonering ... 22
 2.1.8 Historische landschapsontwikkeling .. 23
 2.2 Stikstofdepositie .. 24
 2.3 Analyse van de habitattypes met knelpunten en oorzaken .. 26
 2.4 Herstelmaatregelen ... 26
3 Deelzone Floordambos/Hellebos-Snijselsbos-complex (2400010_B) .. 28
 3.1 Uitvoeriger landschapsecologische systeembeschrijving ... 28
 3.1.1 Topografie - hydrografie .. 28
 3.1.2 Bodem ... 29
 3.1.3 Geohydrologie ... 29
 3.1.4 Grondwaterrodynamiek .. 31
 3.1.5 Grondwaterchemie ... 32
 3.1.6 Oppervlaktewater .. 33
 3.1.7 Vegetatiezonering ... 34
 3.1.8 Historische landschapsontwikkeling .. 34
 3.2 Stikstofdepositie .. 35
 3.3 Analyse van de habitattypes met knelpunten en oorzaken .. 36
 3.4 Herstelmaatregelen ... 37
 3.5 Kennislacunes .. 38
4 Deelzone Weesbeek-en Molенbeekvallei (2400010_C) ... 39
 4.1 Uitvoeriger landschapsecologische systeembeschrijving ... 39
 4.1.1 Topografie - hydrografie .. 39
 4.1.2 Bodem ... 41
 4.1.3 Geohydrologie ... 42
 4.1.4 Grondwaterrodynamiek .. 45
 4.1.5 Grondwaterchemie ... 46
 4.1.6 Oppervlaktewater .. 47
 4.1.7 Vegetatiezonering ... 48
<table>
<thead>
<tr>
<th>Rubriek</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.8 Historische landschapsontwikkeling</td>
<td>48</td>
</tr>
<tr>
<td>4.2 Stikstofdepositie</td>
<td>50</td>
</tr>
<tr>
<td>4.3 Analyse van de habitattypes met knelpunten en oorzaken</td>
<td>52</td>
</tr>
<tr>
<td>4.4 Herstelmaatregelen</td>
<td>52</td>
</tr>
<tr>
<td>5 Deelzone Kastanjebos (2400010_D)</td>
<td>54</td>
</tr>
<tr>
<td>5.1 Uitvoeriger landschapsecologische systeembeschrijving</td>
<td>54</td>
</tr>
<tr>
<td>5.1.1 Topografie - hydrografie</td>
<td>54</td>
</tr>
<tr>
<td>5.1.2 Bodem</td>
<td>55</td>
</tr>
<tr>
<td>5.1.3 Geohydrologie</td>
<td>55</td>
</tr>
<tr>
<td>5.1.4 Grondwaterdynamiek</td>
<td>57</td>
</tr>
<tr>
<td>5.1.5 Grondwaterchemie</td>
<td>58</td>
</tr>
<tr>
<td>5.1.6 Oppervlaktewater</td>
<td>59</td>
</tr>
<tr>
<td>5.1.7 Vegetatiezonering</td>
<td>59</td>
</tr>
<tr>
<td>5.1.8 Historische landschapsontwikkeling</td>
<td>60</td>
</tr>
<tr>
<td>5.2 Stikstofdepositie</td>
<td>62</td>
</tr>
<tr>
<td>5.3 Analyse van de habitattypes met knelpunten en oorzaken</td>
<td>63</td>
</tr>
<tr>
<td>5.4 Herstelmaatregelen</td>
<td>64</td>
</tr>
<tr>
<td>5.5 Kennislacune</td>
<td>64</td>
</tr>
<tr>
<td>Referenties</td>
<td>65</td>
</tr>
<tr>
<td>Bijlage 1: BE2400010 Valleigebied tussen Melsbroek, Kampenhout, Kortenberg en Veltem</td>
<td>67</td>
</tr>
<tr>
<td>Prioritering maatregelen PAS Herstelbeheer Deelzone BE2400010-A</td>
<td>68</td>
</tr>
<tr>
<td>Prioritering maatregelen PAS Herstelbeheer Deelzone BE2400010-B</td>
<td>82</td>
</tr>
<tr>
<td>Prioritering maatregelen PAS Herstelbeheer Deelzone BE2400010-C</td>
<td>96</td>
</tr>
<tr>
<td>Prioritering maatregelen PAS Herstelbeheer Deelzone BE2400010-D</td>
<td>111</td>
</tr>
</tbody>
</table>
Leeswijzer

Desiré Paelinckx, Lon Lommaert, Jeroen Bot, Danny Van Den Bossche

Lees eerst deze leeswijzer alvorens dit rapport en de bijhorende tabellen met PAS-herstelmaatregelen per habitattype toe te passen. Het is daarenboven ten stelligste aangeraden om voorafgaand ook de Algemene PAS-herstelstrategie (De Keersmaeker et. al. 2018) door te nemen, en u daarvan op zijn minst de definities van de PAS-herstelmaatregelen eigen te maken.

Inhoud van deze leeswijzer:

- Doel en scope van de PAS-gebiedsanalyses;
- Stikstofdepositie;
- Habitattypen en hun doelen onder overschrijding;
- Efficiëntie van PAS-herstelbeheer.
- Betekenis van de codes in de PAS-maatregelentabellen (dus in bijlage 1);

Doel en scope van de PAS-gebiedsanalyses

De Vlaamse Regering heeft in uitvoering van de Vogel- en Habitatrichtlijn op 23 april 2014, na een uitvoerig afwegings-, overleg- en beslissingsproces, een reeks speciale beschermingszones (SBZ’s) definitief aangewezen, en er de instandhoudingsdoelstellingen (IHD) en prioriteiten voor vastgesteld. Tevens besliste zij toen een programmatische aanpak stikstof te ontwikkelen.

De programmatische aanpak stikstof heeft als doel de stikstofdepositie op de Speciale Beschermingszones (SBZ’s) planmatig terug te dringen, waarbij (nieuwe) economische ontwikkelingen mogelijk moeten blijven, zonder dat de vooropgestelde instandhoudingsdoelstellingen bedreigd of onhaalbaar worden of blijven, waartoe het niveau van de stikstofdepositie op SBZ stelselmatig moet dalen.

Op die wijze wenst Vlaanderen het realiseren van de Europese natuurdoelstellingen in evenwicht te brengen met de mogelijkheden tot verdere economische ontwikkelingen.

Om de PAS in werking te laten treden heeft de Vlaamse Regering ook op 23 april 2014 beslist dat PAS-gebiedsanalyses m.b.t. het PAS-herstelbeheer moeten opgemaakt worden tegen begin 2018. De Vlaamse minister van Omgeving, Natuur en Landbouw heeft op 18 mei 2016 opdracht gegeven aan het INBO om deze PAS-gebiedsanalyses op te maken.

1 Conceptnota Vlaamse Regering VR 2016 3011 DOC.0725/1QUINQUIES
Het PAS-herstelbeheer is een onderdeel van de IHD-maatregelen en -beheer en wordt toegepast waar de actuele N-depositie de kritische depositiewaarde (KDW)² van een habitatlocatie overschrijdt: is de KDW overschreden en betreft het een maatregel voorzien in de Algemene PAS-herstelstrategie voor dat habitattype (zie verder) dan betreft het PAS-herstelbeheer.

In de Algemene PAS-herstelstrategie (De Keersmaeker et al. 2018) wordt beschreven welke maatregelen in aanmerking kunnen komen voor PAS-herstelbeheer. Het betreft niet alleen maatregelen die de lokale stikstofvoorraad in het systeem verkleinen (bv. plaggen), maar ook alle mogelijke maatregelen die ingrijpen op de complexe verstoringen die stikstofdepositie veroorzaakt. Alle maatregelen zijn wel remediërend t.a.v. een effect dat door N-depositie kan veroorzaakt worden. Zo bepaalt hydrologisch herstel in sterke mate de beschikbaarheid van nutriënten en de mate van verzuring. Andere PAS-herstelmaatregelen tegen de effecten van atmosferische stikstofdepositie hebben bij (grond)waterafhankelijke habitats onvoldoende effect als niet eerst de vereiste hydrologie wordt hersteld.

De Algemene PAS-herstelstrategie (De Keersmaeker et al. 2018) bevat (1) een beschrijving van de PAS-herstelmaatregelen en de wijze waarop ze de stikstofdepositie en verzuring milderen, en (2) per habitattype welke PAS-herstelmaatregelen in aanmerking komen en een globale prioritering daarvan; tevens wordt de effectiviteit van de maatregelen in de onderscheiden habitattypen aangegeven.

In de onderhavige PAS-gebiedsanalyse³ wordt geëvalueerd of de globale prioriteit opgenomen in de Algemene Herstelstrategie opgaat voor deze SBZ op basis van een gerichte (en daardoor beperkte) landschapsecologische systeemanalyse, en past deze prioritering zo nodig aan. In de PAS-gebiedsanalyse wordt op niveau van een habitattype per deelzone (zie verder) uitgemaakt welke PAS-herstelmaatregelen welke prioriteit krijgen en dus van toepassing KUNNEN zijn. Of een maatregel in een bepaald gebied of op een bepaalde habitatvlek aan de orde is, wordt beslist in een beheerplan; zulke beslissing, en het daaraan gekoppelde ruimtelijke en inhoudelijke detail, valt buiten het bestek van de PAS-gebiedsanalyse.

De rapporten met de PAS-gebiedsanalyses worden per Habitatrichtlijngebied (SBZ-H) opgemaakt. Een SBZ-H wordt hierbij meestal opgedeeld in verschillende deelzones op basis van vermelde gerichte landschapsecologische analyse. Een deelzone is een vanuit landschapsecologisch oogpunt min of meer homogene zone. Vaak liggen ecohydrologische overwegingen aan de basis. Een deelzone kan een aantal officiële deelgebieden bundelen, maar kan ook een deelgebied opsplitsen. Normaal betreft het relatief grote zones, wat een belangrijke mate van abstractie tot gevolg heeft.

De kern van de PAS-gebiedsanalyse zijn de tabellen per deelzone per habitattype met de voor de zone weerhouden prioritering (om pragmatische redenen zijn deze toegevoegd als

² Kritische depositiewaarde (KDW): de hoogte van de stikstofdepositie die aangeeft vanaf wanneer er een (significant) negatieve impact op het habitattype optreedt.
³ De scope en het format voor de PAS-gebiedsanalyses is uitgebreid besproken met de vertegenwoordigers van het maatschappelijk middenveld via een Werkgroep PAS-herstelbeheer.
bijlage 1). Het tekstdeel, met o.a. de landschapsecologische analyse, heeft een ondersteunende en informatieve functie ter argumentatie van de voor de deelzone aangepaste prioriteiten.

De beschikbare literatuur, kennis en data verschilt sterk van gebied tot gebied, en ook in een SBZ-H kunnen er op dat vlak grote verschillen zijn. Dit geldt zowel voor het landschapsecologisch functioneren als voor informatie over de biotische toestand en het beheer. Zo zijn er niet voor alle gebieden ecologische studies beschikbaar; voor sommige zijn er zelfs geen data over grondwaterpeil en/of -kwaliteit. Het INBO heeft zijn planning van de veldcampagne voor kartering en LSVI-bepalingen in SBZ-H prioritair gericht op SBZ-H met een groot aandeel te oude habitatkarteringen en op gebieden die het minst bekend zijn binnen het INBO; deze prioritair kartering loopt echter nog enkele jaren. Ook voor de statusbeschrijving (zowel biotisch als abiotisch) van de zoete wateren loopt de veldcampagne nog verschillende jaren. Gebiedsgerichte data over beheer zijn niet beschikbaar onder gebundelde vorm; ze zijn meestal hooguit te achterhalen in voor de overheid toegankelijke beheerplannen en monitoringrapporten. Deze slaan vaak enkel op een klein deel van een deelzone of SBZ, zodat daaruit niet altijd generieke conclusies kunnen worden getrokken.

Niet alleen op vlak van data, maar meer algemeen op vlak van expertise blijven er grote verschillen tussen de verschillende SBZ-H(zones). Dit alles leidt onvermijdelijk tot verschillen in aanpak en diepgang van de rapporten en, in één rapport, tussen de deelzones. Dit is onmogelijk te remediëren in de voorziene tijdspanne. In de maatregelentabellen wordt de bron van de informatie voor de prioritering in termen van ‘terreinkennis’ en/of ‘data’ weergegeven. Het eerste slaat vooral op expertise, integratie van literatuurbeschrijvingen, … , ‘data’ op uitgebreide datasets.

In het PAS-herstelbeheer wordt onderscheid gemaakt tussen maatregelen die ingrijpen op de habitatlocaties zelf, dan wel op de (ruime) omgeving die de kwaliteit van de standplaats van de habitats bepaalt (landschapsniveau).

Alle uitspraken gelden steeds voor het geheel van habitatveelkens (zelfs al worden die pas in de toekomst gerealiseerd) van het betreffende habitattype in de betreffende SBZ-H deelzone. Voor een individuele actuele of toekomstige habitatvelek is het mogelijk dat de prioriteit anders moet gesteld worden wegens specifieke lokale omstandigheden. De PAS-gebiedsanalyse doet dus uitspraken op het niveau van de gehele deelzone, niet op het niveau van individuele habitatveelkens. Dat laatste detailniveau komt aan bod in het beheerplan.

Er wordt uitgegaan van een voor het gebied optimale toepassing van de PAS-herstelmaatregelen, rekening houdend met allerlei andere aspecten zoals impact op, en doelen voor fauna. Wat die optimale toepassing van de maatregelen inhoudt is onderwerp van een beheerplan en valt buiten de PAS-gebiedsanalyse. Een belangrijke literatuurbron daartoe is Van Uytvanck, J. & G. De Blust (red.) (2012).⁴

De relatie tot soorten is beperkt tot het aanduiden van een PAS-herstelmaatregel al dan niet een impact kan hebben op de aangewezen en tot doel gestelde soorten voor de betreffende SBZ-H. Daartoe is in het rapport een kruistabel ingevoegd die de lezer verwijst naar de Algemene PAS-herstelstrategie (De Keersmaeker et al. 2018), waarin die mogelijke impact bij de betreffende maatregel beschreven wordt. In de tabellen met PAS-herstelmaatregelen per habitattype per deelzone kunnen in de rij ‘opmerkingen’ ook aspecten rond soorten vermeld worden, maar dit is zeker niet uitputtend gebeurd. Immers, keuzes ter zake zijn afhankelijk van lokaal gestelde doelen en lokale karakteristieken en mogelijkheden; dat is de opnieuw onderwerp van de beheerplannen. Bij implementatie van PAS-herstelmaatregelen in beheerplannen is het wel essentieel dat het voorgestelde PAS-herstelbeheer rekening houdt met aanwezige én voor dat SBZ-H aangewezen en/of tot doel gestelde soorten. PAS-herstel mag immers het IHD-beleid in het algemeen, en dat van soorten in het bijzonder, niet hypothekeren. En zelfs al zou dit wel nodig zijn, dan moet dat het gevolg zijn van een weloverwogen beslissing.

De maatregel ‘herstel functionele verbindingen’ is een PAS-maatregel opgenomen in de Algemene PAS-herstelstrategie. De reden daartoe is dat, na het toepassen van andere PAS-maatregelen, de kolonisatie door typische soorten kan uitblijven omwille van onvoldoende verbondenheid. Gebiedsgericht, per deelzone, wordt deze maatregel echter niet opgenomen omdat:

- het een maatregel is die pas beoordeeld kan worden na overig PAS-herstel (= dus na het nemen van de overige maatregelen én voldoende tijd opdat deze effect kunnen hebben);

- de zinvolheid / haalbaarheid / efficiëntie van verbinden gebieds Specifieke analyses vergt die buiten het bestek van deze PAS-gebietsanalyses vallen.

Stikstofdepositie

De weergegeven stikstofdepositieschating is het resultaat van depositiemodelleringen. De stikstofdeposities in Vlaanderen worden berekend met het VLOPS-model6 op een ruimtelijke resolutie van 1x1 km².

De stikstofdeposities worden eveneens ingeschat voor de emissies in 2025 en 2030. Die prognoses zijn gebaseerd op de modelleringen via het BAU-scenario (Business As Usual). Laatstgenoemde is een vertaling van de emissieplafonds zoals opgenomen in de Europese NEC-richtlijn (National Emission Ceiling) en de hiermee gepaard gaande, gemodelleerde afname van emissies. Voor meer details hieromtrent verwijzen we naar de IHD-PAS conceptnota bij de regeringsbeslissing van 30 november 2016 (VR 2016 3011 DOC.0725/1QUINQUIES).

6 N.B. De rechtstreekse impact van N-depositie op soorten is een nog verder te onderzoeken materie en wordt hier niet behandeld; er worden daartoe dus ook geen maatregelen opgenomen.

6 De VMM gebruikt het VLOPS-model voor de berekening van de depositie van verzurende en vermestende stoffen. Het VLOPS-model is een atmosferisch transport- en dispersiemodel dat op basis van emissiegegevens, gegevens over landgebruik en meteogegevens, de luchtkwaliteit en de deposities berekent.
Habitattypen en hun doelen onder overschrijding

We benutten daartoe de stikstofoverschrijdingskaart zoals deze ook in het vergunningenbeleid van toepassing is, en ze ontstaat uit de integratie van:

1. de gemodelleerde stikstofdeposities op basis van VLOPS17, de versie van het VLOPS-model in 2017 dat gebruik maakt van emissie- en meteogegevens van het jaar 2012; dit is een rasterlaag met resolutie van 1 km²;
2. de vectoriële habitatkaart, uitgave 2016 (De Saeger et al. 2016);
3. de percelen onder passend natuurbeheer (= de natuurdoelenlaag of evidenties en intenties);
4. de geschikte uitbreidingslocaties voor Europees beschermde habitats i.f.v. de S-IHD: de zgn. voorlopige zoekzones - versie 0.2 (ANB, 2015).

Per deelzone wordt op basis van (1) en (2) een cartografisch beeld gegeven van waar, en in welke mate, de KDW van de actueel aanwezige habitats is overschreden. In een tabel per deelzone wordt per habitattype deze KDW-waarde opgegeven, evenals de totale actuele oppervlakte en de oppervlakte actueel, en volgens de prognoses 2025 en 2030, in overschrijding.

De PAS-herstelmaatregelen gelden echter niet alleen voor actueel aanwezige habitatvlekken, maar ook voor alle in de toekomst gerealiseerde habitatlocaties. Immers, zoals in bovenstaande § ‘Doel en scope’ gesteld, geldt de voorgestelde prioritering voor alle actuele en toekomstige habitatvlekken samen. Daartoe wordt de informatie van (3) en (4) gebruikt, om te bepalen welke habitattypen aan de maatregelen per deelzone toegevoegd dienen te worden. Voor die habitattypen die actueel in de deelzone niet aanwezig zijn, maar waarvoor er in de deelzone wel natuurdoelen / zoekzones in overschrijding zijn, geldt de globaal gestelde prioritering van PAS-herstelmaatregelen, zoals opgenomen in de Algemene PAS-herstelstrategie (De Keersmaeker et al. 2018). Daarom wordt in maatregelentabellen (bijlage 1) het habitattype enkel vermeld (met zijn KDW en de indicatie van de efficiëntie van PAS-herstelbeheer). Bij de opmaak van beheerprioriteiten, waarbij de locatie, het eventuele habitatsubtype, en de lokale omstandigheden van nieuwe habitatlocaties gekend zijn, kan hiervan afgeweken worden (wat overigens ook geldt voor actueel wel aanwezige habitats zoals reeds gespecificeerd in de § ‘Doel en scope’).

Efficiëntie van PAS-herstelbeheer

In de tabellen met PAS-herstelmaatregelen per habitattype (bijlage 1) wordt een **indicatie gegeven van de verwachte efficiëntie van PAS-herstelbeheer** voor elk habitattype, conform de Conceptnota IHD en PAS van de Vlaamse Regering (VR 2016 3011 DOC.0725/1QUINQUIES). De argumentatie voor de differentiatie tussen de habitattypen is opgenomen in de Algemene PAS-herstelstrategie (De Keersmaeker et al., 2018).

A-habitat: PAS-herstelbeheer onvoldoende efficiënt voor duurzaam herstel

Het gaat over het algemeen over habitattypen waarbij stikstofdepositie de bepalende
milieudruk is. Stikstofgericht herstelbeheer is veelal ineffectief of slechts tijdelijk effectief omdat:

- er aanzienlijke ongewenste neveneffecten optreden van het intensieve PAS-herstelbeheer op vlak van soortenrijkdom, fauna, ...

- het PAS-herstelbeheer niet tegelijk de verzurende en vermestende effecten kan aanpakken (bv. bij bossen – intensievere houtoogst voert stikstof af, maar draagt bij tot verzuring), waardoor verdere degradatie onvermijdelijk blijft;

- het positieve effect van PAS-herstelbeheer zeer snel uitgewerkt is bij habitats die in overschrijding blijven.

B-habitat: PAS-herstelbeheer voldoende efficiënt voor duurzaam herstel

Het gaat over het algemeen over habitattypen waarvoor stikstofdepositie niet de enige belangrijke milieudruk is. Daarom kan er aanzienlijke vooruitgang in kwaliteit geboekt worden als het PAS-herstelbeheer zich richt op een verbetering van de globale milieuwaarde, d.i. met inbegrip van andere milieudrUKken dan stikstofdepositie via de lucht.

Deze habitattypen zijn vaak afhankelijk van een goede kwaliteit, kwantiteit en dynamiek van het grondwater. Door hydrologisch herstel kunnen grondwaterkenmerken in een gunstig bereik worden gebracht, zodat de beschikbaarheid van stikstof beperkt wordt, en het bufferende vermogen van de bodem tegen verzuring verhoogt. Omgekeerd geldt dat hydrologisch herstel een belangrijke randvoorwaarde is vooraleer er kwaliteitsverbetering kan optreden in deze (sub)habitattypen.
Betekenis van de codes in de PAS-maatregelentabellen in bijlage 1:

0 **Niet toe te passen maatregel:** deze maatregel is onderdeel van de globale PAS-herstelstrategie van de habitat, maar het is niet wenselijk hem lokaal uit te voeren omdat hij daar aanzienlijke ongewenste effecten heeft (bv. voor een aanwezige populatie van een aangewezen of tot doel gestelde soort). Dit wordt gemotiveerd in de tabel.

1 **Essentiële maatregelen:** deze maatregelen zijn het meest effectief of zijn een randvoorwaarde voor maatregelen van categorie 2 (en 3).

2 **Bijkomende maatregel:** deze maatregelen zijn vrijwel steeds effectief, maar bijna steeds pas na uitvoering van maatregelen met prioriteit 1.

3 **Optionele maatregel:** deze maatregel is minder belangrijk om volgende redenen: slechts zeer lokaal toepasbaar, als eenmalige maatregel (quasi) overal reeds uitgevoerd, heeft een experimenteel karakter (dus effect onzeker), ...

Elke afwijking van de Algemene PAS-herstelstrategie wordt beargumenteerd in de cel ‘motivatie’.

Ook een combinatie van prioriteiten voor eenzelfde maatregel is in de PAS-gebiedsanalyse mogelijk. De argumentatie in de cel ‘motivatie’ geeft inzicht in de wijze waarop met deze combinatie van prioriteiten in de praktijk kan omgegaan worden.

Voorbeeld: in de SBZ-deelzone is een hoog relevante PAS-herstelmaatregel in bepaalde delen reeds uitgevoerd (en dus niet meer relevant), terwijl in de andere delen de prioriteit hoog blijft. Het gelijktijdig aanwezig zijn van habitat in gunstige en ongunstige toestand kan een andere reden zijn tot differentiatie in prioriteit van een maatregel.
1 BESPREKING OP NIVEAU VAN DE VOLLEDIGE SBZ-H

1.1 SITUERING

1.2 SAMENVATTENDE LANDSCHAPSECOLOGISCHE SYSTEEMBESCHRIJVING

Typisch voor deze valleigebieden van de Molenbeek en de Weesbeek is dat zij onder invloed staan van kalkrijk grondwater. De grote hoeveelheden nutriëntarme, kalkrijke kwel die in een aantal zones aan de oppervlakte komt, is bepalend voor de uitzonderlijke natuurwaarden in deze gebieden. Dit zorgt immers voor het voorkomen van voor Vlaanderen zeer zeldzame moeras-, vijver- en graslandbiotopen.

De kwelzones worden in grote mate door regionale grondwaterstromingen gevoed. De voedingsgebieden liggen ten zuiden van deze kwelzones en zijn voor het grootste deel buiten de SBZ gesitueerd. Enkel in het zuidelijke deel wordt ook een hoger gelegen infiltratiegebied omvat.

Een belangrijk deel van natuurwaarden in dit habitatrichtlijngebied zijn gebonden aan de regionale voeding met uitgesproken mineraalrijk (i.c. kalk- en bicarbonaatrijk) grondwater.

Het grondwater kan in deze gebieden tot in de wortelzone geraken door een combinatie van verschillende factoren. Het macoreliëf helpt naar het noorden af en doet dat sterker dan deze van de onderliggende geologische lagen. Hierdoor kunnen bepaalde geologische lagen zich hier uitwijken of kunnen er dagzomen. De dagzomende geologische laag is een tientallen meters dik zandpakket (formatie van Brussel), dat ook watervoerend is. Tijdens het Pleistoceen (2 miljoen tot ca. 10 000 jaar geleden) maakten, volgens de theorie van Van Esbroeck (1935), de gebieden deel uit van een oude loop van de Dijle (zie Figuur 1.1). Deze loop erodeerde een deel van de Brusseliaanzanden weg, waardoor het water in de waterverzadigde laag sterker onder druk komt te staan en hier preferentieel een (uit)weg naar bodemoppervlakte zoekt.

De Brusseliaanzanden zijn in deze regio kalkrijk, wat de uitgesproken mineraalrijke samenstelling verklaart.

Door de hoge hydraulische conductiviteit van de zanden van de formatie van Brussel, zijn de stroomtijden vrij kort (van enkele tot een paar tientallen jaren). Dat betekent dat eventuele
effecten van gebeurtenissen/vervuiling in het infiltratiegebied op vrij korte termijn voelbaar zullen zijn in het “stroomafwaarts” gelegen kwelgebied.

Tijdens het Holoceen heeft de Dijle haar loop in noordelijke richting verlegd om een ‘fossiele’ vallei achter te laten. Omtrent de ouderdom van de fossiele vallei bestaat er tot op heden discussie, afhankelijk van de bron is ze 9000 à 8500 jaar of tussen de 5500-3000 jaar oud. Het bekennet dat zich hier dan vormt, is veel bescheidener van aard. De aanvoer van lemig alluviaal bodemmaterial door de ‘Oer-Dijle’ valt hierdoor grotendeels stil en vanaf dan werden ze vooral onderhevig aan (uitlogende) bodemprocessen: vorming van oud-alluvium.

Het oud-alluvium heeft een vrij neutrale chemische samenstelling, waardoor relatief gemakkelijk andere factoren (bijv. aanvoer van basen met grondwater) hun stempel op de standplaats bepalen. Het kan resulteren in een vrij grote abiotische diversiteit (bijv. droge zure en natte kalkrijke bodems). In toenemende mate van grondwaterinvloed is een typische gradiente in de bosfeer : (zuur) beuken-eikenbos (H9120), eiken-haagbeukenbos (H9160), beekbegeleidend bos (H91E0_va) tot mesotroof broekbos (H91E0_vm) en in de open sfeer: heischraal grasland (H6230), glanshavergrasland (H6510), blauwgrasland (H6410), kalkmoeras (H7230), basenrijk trilveen (H7140_base), galigaanmoeras (H7210) en kranswierwateren (H3140).

Een groot deel van deze valleigebieden kennen een historisch gebruik als bos. Het habitatrichtlijngebied bestaat actueel voor meer dan 1000 ha uit bos (70%), voornamelijk gelegen in lager gelegen delen in het landschap. De habitattypen van open milieus zijn veel zeldzamer en komen verspreid binnen de deelzones voor.

Figuur 1.1 Oude loop van de Dijle volgens Van Esbroeck (1935) geprojecteerd op een DHM
1.3 OPDELING IN DEELZONES

het SBZ kan opgedeeld worden in vier deelzones (Figuur 1.2). De grondslag voor de indeling zijn de beekvalleien: elke beekvallei is in principe toebedeeld aan een andere deelzone. In deelzone ‘Floordambos/Hellebos-Snijsselsbos-complex’ werden twee beekvalleien tot één deelzone gecombineerd, omdat ze landschapsecologisch alsook op het vlak van voorgestelde herstelmaatregelen gelijkwaardig zijn. Deelzone ‘Torfbroek’ kenmerkt zich doordat hier de invloed van de intensieve en zeer minerale kwel het meest uitgesproken is. Deelzone ‘Weesbeek-en Molenbeekvallei’ en Deelzone ‘Kastanjebos’ worden vooral onderscheiden door de aanwezigheid van een actieve drinkwaterwinning in het Kastanjebos.
1.4 AANGEWEZEN EN TOT DOEL GESTELDE SOORTEN VAN HET NATUURDECREET (BIJLAGE II, III EN IV) WAAROP DE VOORGESTELDE MAATREGELEN MOGELIJK IMPACT HEBBEN

Tabel 1.1 Voor dit Habitatrichtlijngebied aangewezen en tot doel gestelde soorten, met duiding of de PAS-herstelmaatregelen erop al dan niet een invloed kunnen hebben (om te weten welke deze invloed is, wordt verwezen naar De Keersmaeker et al., 2018)

| Gebied Code | Groep | Gebruikte Soortnaam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 19 | 20_1 | 20_2 | 20_4 | 20_5 | 20_6 | Bron (referentie, expert judgement) |
|-------------|-----------|---------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----------------------------------|
| BE2400010 | Slakken | Zeggekorfslak | x | x | | x | | | | | | | | | | | | | | | | | | * |
| BE2400010 | Vissen | Bittervoorn | x | | x | | | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Baardvleermuis | | | x | | x | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Brandtsvleermuis | | | x | | x | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Franjeastaart | | | x | | x | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Gewone dwergvleermuis| x | | | x | | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Gewone grootvleermuis| | x | | x | | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Grijze grootvleermuis| | | x | | x | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Kleine dwergvleermuis| | x | | x | | | | | | | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Rosse vleermuis | | | | | | | | | | x | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Ruige dwergvleermuis| | | | | x | | | | | x | | | | | | | | | | | | Expert Judgement |
| BE2400010 | Vleermuizen| Watervleermuis | | | | | x | | | | | x | | | | | | | | | | | | Expert Judgement |

1 Plaggen en chopperen
2 Maaien
3 Begrazen
4 Branden
5 Strooisel verwijderen
6 Opslag verwijderen
7 Toevoegen basische stoffen
8 Baggeren
9 Vegetatie ruimen
10 Vrijzetten oevers
11 Uitvenen
12 Manipulatie voedselketen
13 Ingrijpen structuur boom- en struiklaag
14 Ingrijpen soorten boom- en struiklaag
15 Verminderde oogst houtige biomassa
16 Tijdelijke drooglegging
17 Herstel dynamiek wind
19 Aanleg van een scherm
20_1 Herstel waterhuishouding: structureel herstel op landschapsschaal
20_2 Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit
20_3 Herstel waterhuishouding: herstel grondwaterwaterkwaliteit
20_4 Herstel waterhuishouding: afbouw grote grondwateronttrekkingen
20_5 Herstel waterhuishouding: optimaliseren lokale drainage
20_6 Herstel waterhuishouding: verhogen infiltratie neerslag
2 DEELZONE TORFBOEK (2400010_A)

2.1 UITVOERIGER LANDSCHAPSECOLOGISCHE SYSTEEMBESCHRIJVING

2.1.1 Topografie - hydrografie

Het gebied vormt het amfitheatervormig dalhoofd van de Keibeek (een zijvalleitje van de Weesbeek). Er vertrekken op nauwelijks een kilometer van elkaar een aantal kleine beekjes in noordelijke, en noordoostelijke richting, waaronder de Keibeek. Het gebied ligt tussen de 15-20 m TAW (Figuur 2.1). Anders dan in andere alluviale systemen is de detailtopografie hier vrij egaal. Omwille van de ligging aan het begin van een alluviale vallei treden hier zo goed als geen piekafvoeren of overstromingen op en zijn er dus ook geen oeverwallen en komgronden op gebouwd; het dalhoofd is grotendeels vergraven (Torfbroekvijvers) waarbij het uitgegraven materiaal rond de vijvers is opgestapeld. Verder ligt er nog een met stortmateriaal opgehoogd terrein.

Figuur 2.1 Hoogteligging (DHM-1m) en hydrografie
2.1.2 Bodem

In de vallei zijn volgens de bodemkaart (Figuur 2.2) en een bodemstudie (Deconinck et al., 2006) lemig tot kleiig. Op geringe diepte (+/- 1 m) en meer naar de valleiranden wordt de bodem zand(lem)iger. Het zijn oud-alluviale bodems. Veen is nog slechts lokaal aanwezig (zie verder). In de permanent natte bodems en in de vijvers is er actueel een actieve veenontwikkeling.

2.1.3 Geohydrologie

De zanden van de formatie van Brussel vormen hier een (freatische) watervoerende pakket (HCOV-code 0620). Het helt ca. 2% naar het noorden af en het bestaat hier uit zeer mineraalrijk grof zand en kalkzandsteenknollen. De zanden van Brussel kunnen hier plaatselijk erg kalkrijk zijn door de aanwezigheid van soms dikke fossiele schelpafzettingen. Het gebied ligt aan de noordkant van de zgn. ‘steilrand’, die meteen de zuidrand vormt van de Vlaamse vallei. De stroomsnelheden van het grondwater bedragen tot ca. 25m/jaar. De kweldruk wordt geraamd op 2-4 mm/dag en het infiltratiegebied strekt zich uit tot ca. 6 kilometer ten zuiden van het natuurgebied (Figuur 2.3).
Een heel groot percentage van dit grondwatervoedingsgebied ligt onder (vrij intensieve) landbouwuitbating, een tweede belangrijk deel ligt onder urbaan gebied (Kortenberg) en slechts een zeer klein deel ligt onder natuurgebied. Bovendien ligt ca. 400 m ten zuiden van het natuurgebied een zandgroeve waarin ook ‘inert’ materiaal gestort wordt/werd. Momenteel zijn er regelmatig negatieve effecten gemeten (te hoge chloride en sulfaat in het grondwater (Poelen et al., 2015) of verdroging als gevolg van bemaling aan de rand van het gebied (De Becker, 2011)). Daarmee is aangetoond dat het gebied gevoelig is voor abiotische verstoring en dat het ook relatief gemakkelijk te verstoren is. De nodige aandacht zal vereist blijven om erover te waken dat hier geen calamiteiten kunnen optreden.

2.1.4 Grondwaterdynamiek

Van zuid naar noord zit er een scherpe gradiënt in grondwaterdynamiek in het gebied, die samen evolueert met de dalende topografie (Figuur 2.4). In het zuiden, net buiten het eigenlijke kwelgebied zit het grondwater het diepst onder het maaiveld en heeft ook een relatief grote amplitude. De amplitude is echter ook hier al gedempt door de
grondwateraanvoer. Naarmate men meer in de richting van het centraal deel van de bronvallei gaat, stijgt het gemiddelde grondwaterpeil en vermindert de fluctuatie.

Aangezien het om een vrij ‘snel’ hydrologisch systeem gaat (vrij hoge hydraulische geleidbaarheid) hebben drainageactiviteiten aan de rand van het gebied een grote impact binnen dit gebied. Zo werd in 2010 open sleuf bemaling toegepast bij het aanleggen van een afvalwatercollector ten NO van het gebied. Dat leidde tot een grondwaterstandsverlies van 0.3 m tot op een afstand van 350m in een zone met zeer gevoelige grondwaterafhankelijke vegetaties (De Becker, 2011).

2.1.5 Grondwaterchemie

In het infiltratiegebied wordt het grondwater aanzienlijk aangerijkt met nitraten. Er werden concentraties globaal boven 80 mg NO₃/l en tot 130 mg NO₃/l gemeten (2004-2016, data VMM, geraadpleegd in september 2017 op website www.dov.vlaanderen.be). Er is hierin duidelijk een stijgende trend zichtbaar. Voor deelzone ‘Floordambos/Hellebos-Snijsselsbos-complex’ is aangetoond (zie verder) dat de hoeveelheden nitraat die in het grondwater in het zuidelijk gelegen landbouwgebied infiltreerden denitrificeerden tijdens het stromen door pyrietrijke sedimenten. Dat vindt daar plaats op een ongeveer tiental meter diepte. Het is aannemelijk dat zich in deze deelzone ook dezelfde denitrificatiereacties afspeelden.

Bovendien ligt net te zuiden van het natuurgebied, midden in het infiltratiegebied een (nog operationele) zandgroeve waarin ook materiaal gestort werd/wordt.

Behalve de vervuiling met nitraat, zouten en ook sulfaten (stortmateriaal en ontstaan uit denitrificatie van inspoelend nitraat vanuit landbouw), is de grondwaterkwaliteit hier uniform (erg) mineraalrijk (Tabel 2.1).

Tabel 2.1 Overzicht grondwaterchemie (bron: Watina-databank)

<table>
<thead>
<tr>
<th>param</th>
<th>EC</th>
<th>pH</th>
<th>NO₃</th>
<th>PO₄</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Fe</th>
<th>tot</th>
<th>min</th>
<th>10-</th>
<th>50-</th>
<th>90-</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>µS/cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>1925</td>
<td>7,9</td>
<td>840</td>
<td>0,202</td>
<td>0,710</td>
<td>8,98</td>
<td>36,00</td>
<td>472</td>
<td>158,0</td>
<td>102,1</td>
<td>30,3</td>
<td>377,0</td>
<td>14,9</td>
<td>13,40</td>
<td></td>
</tr>
<tr>
<td>90-percentiel</td>
<td>1415</td>
<td>7,5</td>
<td>625</td>
<td>0,047</td>
<td>0,305</td>
<td>1,51</td>
<td>0,30</td>
<td>162</td>
<td>112,1</td>
<td>49,0</td>
<td>5,8</td>
<td>268,2</td>
<td>9,4</td>
<td>6,30</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>1000</td>
<td>7,1</td>
<td>495</td>
<td>0,002</td>
<td>0,023</td>
<td>0,74</td>
<td>0,88</td>
<td>74</td>
<td>51,4</td>
<td>24,2</td>
<td>2,8</td>
<td>193,4</td>
<td>6,7</td>
<td>2,03</td>
<td></td>
</tr>
<tr>
<td>10-percentiel</td>
<td>716</td>
<td>6,8</td>
<td>346</td>
<td>0,006</td>
<td>0,010</td>
<td>0,06</td>
<td>0,04</td>
<td>2</td>
<td>19,0</td>
<td>9,8</td>
<td>0,5</td>
<td>138,3</td>
<td>4,1</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>618</td>
<td>6,3</td>
<td>282</td>
<td>0,005</td>
<td>0,010</td>
<td>0,01</td>
<td>0,03</td>
<td>2</td>
<td>6,5</td>
<td>7,8</td>
<td>0,3</td>
<td>49,0</td>
<td>2,6</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>
2.1.6 Oppervlaktewater

Het regime van het beekje dat uit het gebied stroomt vertoont nauwelijks schommelingen. Van overstromingen is er geen sprake.

De stilstaande wateren worden geheel door grondwater gevoed. De chemische samenstelling ervan is bijgevolg een weerspiegeling van de grondwatersamenstelling. Ze worden gerekend tot matig ionenrijke, alkalische wateren (Jochems et al., 2002). Een verhoogde toevoer van sulfaten is hier een mogelijk knelpunt: in het organisch rijke sediment reduceert het sulfaat tot sulfide. Er was voldoende ijzer aanwezig of het werd mee aangevoerd om deze sulfiden te neutraliseren (FeS-neerslag). Als de sulfaatconcentratie in verhouding tot de ijzerconcentratie stijgt, kunnen sulfiden zich opstapelen tot voor waterplanten toxische concentraties. In het deelgebied zijn de verhoudingen op een aantal plaatsen kritiek (Poelen et al., 2015).

2.1.7 Vegetatiezonering

Op de steile hydrodynamische gradiënt is een vegetatiezonering te vinden vertrekkende vanuit het zuiden naar het noorden van glanshavergrasland (6510_hu), over basenrijke pijpenstrootjesgraslanden (en echte blauwgrasgraslanden) (6410_mo) naar trilveen met ronde zegge (7140_base). Galigaanmoeras (7210) is een verlandingsvegetatie gebonden aan ondiep kalkrijke oppervlaktewater. Kranswierwateren (3140) komen voor in ofwel permanent relatief diepere wateren ofwel in permanent ondiepe wateren zonder verlanding (greppels) (Figuur 2.5).

Bij vernatting evolueren de blauwgraslanden naar grote zeggenvegetaties (rbbmc). Verruiging geeft aanleiding tot ontwikkeling van moerasspirea- en rietruigten (rbbhf / 6430_hf). Bosontwikkeling verloopt via wilgenstruweel (rbbso), in de natste terreindelen, naar mesotroof broekbos (91EO_vm) en, in de relatief drogere terreindelen, naar beekbegeleidend bos (91EO_va).

Figuur 2.5 schema van vegetatiezonering in het Torfbroek (met aanduiding van peilbuizen uit Figuur 2.4)
2.1.8 Historische landschapsontwikkeling

Historisch (sinds de middeleeuwen tot begin 20ste eeuw) werd het gebied relatief intensief voor allerlei doeleinden (vnl. voedsel en energie) gebruikt. Er werd vrij algemeen turf gestoken, vee geweid en brandhout gekapt. Op enkele plaatsen groef men kleine putten (mogelijk ook een gevolg van de turfwinning) om vis in te kweken en om vlas in te roten (roting vergt kalkrijk water).

![Figuur 2.6 Topografische kaart 1892](image-url)
Deze activiteiten resulteerden in een landschapsbeeld eind 19de eeuw van een centraal open gebied (Figuur 2.6 en Figuur 2.7). De randen/ drogere delen bleven bebost en waren, steunend op oude kadastergegevens, vooral in gebruik als hakhout.

De bebouwing is de voorbije decennia rond het gebied sterk toegenomen, waardoor deze deelzone min of meer geïsoleerd is geraakt van de andere deelzones.

2.2 **STIKSTOFDEPOSITIE**

Tabel 2.2 Kritische depositiewaarde (KDW), totale oppervlakte en oppervlakte in overschrijding (actueel en prognose voor 2025 en 2030) voor de actueel binnen de deelzone aanwezige habitattypen

<table>
<thead>
<tr>
<th>code</th>
<th>naam</th>
<th>KDW (kg N/ha/ jaar)</th>
<th>totale oppervlakte (ha)</th>
<th>oppervlakte in overschrijding (ha) 2012</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>3140</td>
<td>Kalkhoudende oligo-mesotrofe stiltaande wateren met benthische Chara spp. vegetaties</td>
<td>8</td>
<td>2,79</td>
<td>2,79</td>
<td>2,79</td>
<td>2,79</td>
</tr>
<tr>
<td>6410_mo</td>
<td>Basenrijke Molinion-graslanden (Blauwgraslanden s.s.)</td>
<td>15</td>
<td>1,74</td>
<td>1,74</td>
<td>1,74</td>
<td>1,74</td>
</tr>
<tr>
<td>Code</td>
<td>Habitat Description</td>
<td>N</td>
<td>P</td>
<td>O</td>
<td>E</td>
<td>I</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>6430_hf</td>
<td>Vochtige tot natte moerasspirearugten</td>
<td>>34</td>
<td>0,16</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>6510_hu</td>
<td>Laaggelegen schraal hooiland: glanshaververbond (sensu stricto)</td>
<td>20</td>
<td>0,07</td>
<td>0,07</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>7140_base</td>
<td>Basenrijk trilveen met ronde zegge</td>
<td>16</td>
<td>0,26</td>
<td>0,26</td>
<td>0,26</td>
<td>0,26</td>
</tr>
<tr>
<td>7210</td>
<td>Slenken in veengronden met vegetatie behorend tot het Rhynchosporion Kalkhoudende moerassen met Cladium mariscus en soorten van het Caricion davalliana</td>
<td>22</td>
<td>0,09</td>
<td>0,09</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>7230</td>
<td>Alkalisch laagveen</td>
<td>16</td>
<td>0,88</td>
<td>0,88</td>
<td>0,88</td>
<td>0,88</td>
</tr>
<tr>
<td>9120</td>
<td>Atlantische zuurinnende beukenbossen met Ilex en soms ook Taxus in de ondergroei</td>
<td>20</td>
<td>1,28</td>
<td>1,28</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>91E0_va</td>
<td>Beekbegeleidend vogelkers-essenbos en essen- iepenbos</td>
<td>28</td>
<td>4,57</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>91E0_vf</td>
<td>Beekbegeleidend vogelkers-essenbos en essen- iepenbos</td>
<td>28</td>
<td>2,80</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>91E0_vm</td>
<td>Meso- tot oligotroof elzen- en berkenbroek</td>
<td>26</td>
<td>5,82</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>91E0_vn</td>
<td>Ruigte-elzenbos (Filipendulo-Alnetum)</td>
<td>26</td>
<td>1,92</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Eindtotaal</td>
<td></td>
<td>22,37</td>
<td>7,10</td>
<td>5,67</td>
<td>5,67</td>
<td></td>
</tr>
</tbody>
</table>

gemodelleerde stikstofdeposities op basis van het VLOPS17-model, dat gebruik maakt van emissie- en meteogegevens van het jaar 2012. De prognoses 2025 en 2030 zijn gebaseerd op de modelleringen via het BAU-scenario (zie leeswijzer).

Figuur 2.8 Overschrijding van de kritische depositiewaarde van de actueel aanwezige habitats, op basis van de gemodelleerde stikstofdeposities volgens het VLOPS17-model, dat gebruik maakt van emissie- en meteogegevens van het jaar 2012, en de vectoriële habitatkaart, uitgave 2016 (De Saeger et al. 2016)
2.3 ANALYSE VAN DE HABITATTYPES MET KNELPUNTEN EN OORZAKEN

Het voedingsgebied van het grondwater ligt vrijwel integraal buiten SBZ. Daarenboven is de fretische grondwaterlaag relatief goed waterdoorlatend. Wijzigingen in de hydrologie, zowel op kwantitatief als op kwalitatief vlak werken relatief snel door. Dat maakt dat de grondwaterafhankelijke vegetaties erg kwetsbaar zijn voor verdroging en verontreiniging.

Bosken

Het merendeel van de historisch oude bossen bevindt zich aan de SBZ-grenzen en zijn relatief klein in oppervlakte. Ze zijn daardoor sterk aan randinvoer onderhevig. Dit uit zich in een actueel te hoge bedekking van storingsindicatoren.

Graslanden

Hoewel de aanwezige habitattypen (H6410) vooral P-gelimiteerd zijn, is er een duidelijk effect van een verhoogde N-input op de biomassa-productie waarneembaar, bijvoorbeeld tijdens de natte juni maand 2016 of juist bij droge jaren (verhoogde mineralisatie). Het tijdsvenster om deze graslanden goed te beheren (jaarlijks maaien) wordt hierdoor verkleind (schrane vegetaties: +/- 3 maand, t.o.v. een actuele: 1 maand), wat de kansen op herstel en/of uitbreiding verkleint.

Er zijn aanwijzingen dat de verhoogde sulfaatconcentraties in het grondwater de veenmosontwikkeling in de blauwgraslanden stimuleren wat er kan leiden tot een versnelde verzuring en achteruitgang van de kwaliteit.

Moeras/Open water

De verhoogde sulfaatconcentraties in het grondwater zorgen voor een onevenwichtige Fe/S-balans, waardoor toxische sulfides zich kunnen opstapelen (Poelen et al., 2015). Dit vertaalt zich in een vertroebeling van het oppervlaktewater en een sterke achteruitgang van (ondergedoken) waterplanten. De verwachte impact is het grootst op kranswieren-wateren (H3140) en galigaanmoeras (H7210), maar dit proces kan zich ook voordoen in de depressies van basenrijk trilveen (H7140_base) en kalkmoeras (H7230).

2.4 HERSTELMAATREGELEN

De herstelmaatregelen en hun prioriteit voor deze deelzone zijn opgenomen in bijlage 1, die integraal deel uitmaakt van dit rapport.

Aangewezen habitattypen waarvoor geen gebiedsgerichte prioriteitstelling is opgemaakt

- **6230**: komt actueel niet voor in deze deelzone, maar er zijn wel zoekzones waarvan de KDW van dit type overschreden is. Pas bij realisatie van de doelen is de locatie gekend en kan een gebiedsgerichte invulling gebeuren.

- **7220**: actueel wel aanwezig in de deelzone, maar dit blijkt niet uit de habitatkaart. Reden hiertoe is dat de huidige restanten klein en sterk versnipped zijn.
• 9160: komt actueel niet voor in deze deelzone, maar er zijn wel zoekzones waarvan de KDW van dit type overschreden is. Pas bij realisatie van de doelen is de locatie gekend en kan een gebiedsgerichte invulling gebeuren.

Voor deze habitattypen geldt de globaal gestelde prioritering van PAS-herstelmaatregelen, zoals bepaald en beargumenteerd in de Algemene herstelstrategie.

Voor deze deelzone zijn vooral instandhoudingsdoelen voor grondwatergebonden habitattypen van open milieu geformuleerd. Bij deze habitattypen is het uitvoeren van een jaarlijkse maaibeurt essentieel gebleken om ze in een gunstige staat van instandhouding te herstellen. Bij omvorming zijn twee maaibeurten per jaar aan te bevelen.

Actueel hebben de bestaande habitatvlekken van open milieu een relatief geringe oppervlakte. Bij het herstel van deze habitattypen werd vertrokken van heel kleine oppervlakten (soms niet meer dan een are klein). Het vergroten van deze vlekken was/is een belangrijke factor bij het herstel. Geïsoleerde fragmenten evolueren trager dan grotere of verbonden fragmenten. Het uitbreiden van bestaande open habitatten en waar mogelijk ze met elkaar verbinden is ook een belangrijke voorwaarde om een herstel te realiseren. Dit stemt overeen met het prioritaire IHD-doel: ‘Versterken en beschermen van de water- en moerashabitatten in Torfbroek en Silsombos’.

Voor de grondwatergebonden habitattypen is de verbetering van de grondwaterkwaliteit een prioritaire maatregel. Het is belangrijk om de concentraties van sulfaat en nitraat/ammonium in het grondwater te verlagen. Dit kan gerealiseerd worden door maatregelen te nemen die de uitspoeling van nitraten beperken (bijv. door buffergebieden met nulbemesting aan te leggen, evenwichtsbemesting te praktizeren, het toevoegen van organisch materiaal met een hoge C/N verhouding) en door de sanering van een nabijgelegen stort waaruit o.a. sulfaten logen. Deze herstelmaatregelen vallen samen met het prioritaire IHD-doel ‘bufferen van hoog kwalitatieve habitattypen in Torfbroek’.

Voor de open wateren is ook het ontslibben van de vijverbodem een noodzakelijke maatregel om kranswierrijke vegetaties (H3140) duurzaam in stand te kunnen houden. Deze herstelmaatregel is gekaderd in het prioritaire IHD-doel ‘Versterken en beschermen van de water- en moerashabitatten in Torfbroek en Silsombos’.

In het gebied ligt slechts een kleine oppervlakte bos (H9120) met een overschreden KDW. Dit bosperceel is vooral gebaat bij een beheer dat zorgt voor een hogere lichtinval door in grijpen in de struik- en boomlaag. Dit kan hier vooral bewerkstelligd worden door het verhogen van het volume dood staand hout. Deze maatregelen passen binnen het IHD-doel ‘Versterken van de bossen’
3 DEELZONE FLOORDAMBOS/HELLEBOS-SNIJSSELSBOS-COMPLEX (2400010_B)

3.1 UITVOERIGER LANDSCHAPSECOLOGISCHE SYSTEEMBESCHRIJVING

3.1.1 Topografie - hydrografie

Het gebied ligt tussen de 9-20 m TAW (Figuur 3.1). Anders dan in andere alluviale systemen (buiten deze SBZ) is de topografie hier vrij egaal. Binnen het gebied zelf komen er bijna geen hoogteverschillen voor. Het wordt ontwaterd door verschillende kleine beken, die alle, uitgezonderd ‘de’ Molenbeek in het SBZ-gebied zelf of in de onmiddellijke omgeving ervan ontstingen (Trawoolbeek, Lellebeek, Veerlebeek, Leibeek, Torfbroekleibeek, Dode beek, ...). Deze beekjes worden gevoed door een soms fijnmazig netwerk van drainagereppels (Figuur 3.1).

De Trawoolbeek watert af naar de Zenne, de overige beekjes stromen via de Barebeek naar de Dijle. Omwille van de ligging aan het begin van een alluviale vallei treden hier zo goed als geen piekaanvoeren of overstromingen op. De Molenbeek vormde hierop door de toenemende bebouwing in de vallei vooral eind 20ste eeuw enigszins een uitzondering. De beekvallei heeft hier daarom geen oeverwal/komgrondstructuur.

Figuur 3.1 Hoogteligging (DHM-1m) en hydrografie, met in uitsnede de detailtopografie met een fijnmazig rabattenstructuur
3.1.2 Bodem

Men vindt er vooral alluviale leem/kleibodems (Figuur 3.2). In het zuidelijke deel van deze deelzone zijn de bodems lemig, terwijl in het noordelijke deel ze vooral kleig zijn. Het zijn voornamelijk oud-alluviale afzettingen (zie hoger). Naar de valleiranden toe worden de bodems zandlemiger.

In de laagst gelegen delen zinkt de grondwatertafel niet onder 1.2m onder maaiveld, in de hogere delen hebben de bodemprocessen geleid tot de vorming van ‘pseudo-gley’-bodems, waardoor er hier sprake is van de vorming van stuwwatertafels.

3.1.3 Geohydrologie

De geohydrologie is goed vergelijkbaar met deze van de deelzone ‘Torfbroek’. Ook hier dagzoomt kalkrijk Brusseliaan (HCOV: 0620), dat een watervoerende laag is (geel gekleurde laag in Figuur 3.3).

Een studie naar de regionale kwel (Batelaan et al., 1996) toont voor de bronhoofden van de valleitjes een hoge kweldruk (Figuur 3.4). Deze bronhoofden zijn echter buiten de SBZ gelegen. De bronhoofden die binnen de SBZ gelegen zijn, zouden bijgevolg vooral een lokale oorsprong kennen. Vooral in de centrale delen is sprake van een kweldruk van 2 - 10 mm/dag (). De (regionale) kweldruk vermindert meer naar de randen van de SBZ.
De actuele grondwaterpeilen liggen in deze deelzone gemiddeld lager dan in de deelzone ‘Torfbroek’, vermoedelijk door een combinatie van een effectieve lagere kweldruk en een sterkere oppervlakkige drainage.

Ook het voedingsgebied bevindt zich ook hier vrijwel volledig buiten het studiegebied. Door het ontbreken van modelberekeningen kan een meer precieze afbakening niet gegeven worden. Omdat de geologische opbouw vergelijkbaar is met deze van deelzone ‘Torfbroek’, valt te verwachten dat de aanvoer ook vanuit zuidelijke richting komt. Hier liggen verschillende woonkernen, alsook een vliegveld: de toegenomen verharde oppervlakte kan een verklaring zijn voor de effectieve lagere kweldruk.

Figuur 3.3 Geologische doorsnede van het gebied. Situering (boven), 2D-doorsnede van ZW naar NO (links onderaan), 3D-doorsnede (rechts onderaan) (Mathijs et al, 2013)
3.1.4 Grondwaterdynamiek

Momenteel zijn grondwaterpeilmetingen uit het gebied schaars. Eén transect peilbuizen loodrecht op de Barebeek geeft aan dat daar de kwelgebieden het dichtst bij de beek gelegen zijn (kleinste amplitude) en dat ze door de beek gedrenkt worden, want de hoogste grondwaterpeilen worden in de verste afgelegen peilbuizen gemeten (Figuur 3.5).
3.1.5 Grondwaterchemie

Voor dit gebied is aangetoond dat er aanzienlijke hoeveelheden nitraat in het grondwater infiltreerden in het zuidelijk gelegen landbouwgebied met concentraties tot 130 mg NO₃/l en die tot 13 meter diepte doordringen (o.a. in 2000-2002) (Figuur 3.6). Het nitraat denitrificeert grotendeels als het stroomt door pyrietrijke sedimenten, die hier vanaf een diepte van 13 m voorkomen (Eppinger & Walraevens, 2003).

![Figuur 3.5 Grondwaterpeilen (t.o.v. maaiveld) in een transect dwars op de Barebeek](image-url)
Uit de spaarzame grondwaterchemiemetingen in de deelzone zelf (VMM, 2002 geraadpleegd op DOV-website september 2017) blijkt dat het grondwater basisch (pH > 7.2) en kalkrijk (Ca > 100 mg/l) is. Het is ook sulfaatrijk (SO4 > 150 mg/l), maar vrij chloride-arm (Cl < 25 mg/l).

3.1.6 Oppervlaktewater

Overstromingen treden maar zeer lokaal binnen het gebied op. Door de collectering van afvalwater is de overstromingsfrequentie binnen het SBZ merkelijk gedaald. Er is een RWZI in het SBZ gesitueerd. In deze RWZI wordt het water niet tertiair gezuiverd, waardoor het effluent (bestemd voor de Molenbeek) (matig) nitraat- en (matig) fosfaatrijk is. Een effluent van IBA is nog nitraat- en fosfaatrijk. De biologische kwaliteit van zowel de Lellebeek als de Molenbeek is de afgelopen tien jaar verbeterd, deze van de Lellebeek is actueel goed (bron: VMM, meetpunten 380700 en 380800). De Trawoolbeek ontvangt nog sterk met zouten verontreinigd water (meetpunt: 361600).

Fysico-chemisch zijn de oppervlaktewateren in vergelijking met grondwater relatief nitraat- en fosfaatrijk.

Over de kwaliteit van de stilstaande wateren is weinig bekend. In een recent gegraven plas in het Hellebos heeft zich op korte termijn een kalkminnende vegetatie kunnen ontwikkelen.
3.1.7 Vegetatiezonering

We geven hier een theoretisch vegetatiezonering in de bosseer, omdat binnen deze deelzone van het SBZ de loofbossen veruit het grootste oppervlakte-aandeel hebben. Op de bodems waar het grondwater het diepst zit, treft men Wintereiken-Beukenbos aan (H9120): door de eeuwenlange uitloging is de bodem hier vrij zuur geworden. In bodems met stuwwatertafels verloopt de uitloging trager. Hier kan men eikenhaagbeuk-bossen (H9160) aantreffen, die in het SBZ vrij algemeen verspreid en ook zeer goed ontwikkeld zijn. De kwelzones zijn meestal geschikt voor de ontwikkeling van beekbegeleidend bos (H91E0_va), op de schaarse zeer natte plaatsen vindt men er ruigte-elzenbos (H91E0_vn).

3.1.8 Historische landschapsontwikkeling

De sterk hydromorfe bodems bemoeilijken het gebruik voor landbouw. Bosbouw was het alternatief. In het bosgebied werden ook verschillende kasteelparken aangelegd.

Het landgebruik is in de laatste 300 jaar opvallend gelijkvormig gebleven (Figuur 3.7 en Figuur 3.8). Op vele plaatsen zijn de historische perceelgrenzen nog op het terrein aanwezig en is de middeleeuwse rabattenstructuur vrij goed bewaard gebleven. Hierdoor hebben hier zich over relatief grote oppervlakte ‘oud-bos’-vegetaties ontwikkeld.

Figuur 3.7 Historische kaart Ferraris (+/- 1777)
Op enkele locaties in het Floordambos is het reliëf plaatselijk gewijzigd door de ontginning van kalkzandsteenlagen.

Vooral in het noordelijk deel, langs de Dode beek, kwamen (soortenrijke) vochtige schraalgraslanden voor. Deze zijn momenteel beplant met populier.

3.2 STIKSTOFDEPOSITIE

Tabel 3.1 Kritische depositiewaarde (KDW), totale oppervlakte en oppervlakte in overschrijding (actueel en prognose voor 2025 en 2030) voor de actueel binnen de deelzone aanwezige habitattypen

<table>
<thead>
<tr>
<th>code</th>
<th>naam</th>
<th>KDW (kg N/ha/jaar)</th>
<th>totale oppervlakte (ha)</th>
<th>oppervlakte in overschrijding (ha)²</th>
<th>2012</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>3140</td>
<td>Kalkhoudende oligo-mesotrofe stilstaande wateren met benthische Chara spp. vegetaties</td>
<td>8</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>6230_hn</td>
<td>Droog heischraal grasland</td>
<td>12</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>6430_rbbhf</td>
<td>Voedselrijke zoomvormende ruigten of regionaal belangrijk biotoop moerasspirearuigten met graslandkenmerken</td>
<td>>34</td>
<td>0,36</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>6430_bz</td>
<td>Boszomen</td>
<td>26</td>
<td>0,22</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>6430_hf</td>
<td>Vochtige tot natte moerasspirearuigten</td>
<td>>34</td>
<td>0,19</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>6510</td>
<td>Laaggelegen schraal hooiland: glanshaververbond (subtype onbekend)</td>
<td>20</td>
<td>0,05</td>
<td>0,05</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>6510_hu</td>
<td>Laaggelegen schraal hooiland: glanshaververbond (sensu stricto)</td>
<td>20</td>
<td>3,03</td>
<td>3,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>9120</td>
<td>Atlantische zuurminnende beukenbossen met Ilex en soms ook Taxus in de ondergroei</td>
<td>20</td>
<td>59,10</td>
<td>59,10</td>
<td>5,73</td>
<td>5,73</td>
<td>5,73</td>
</tr>
</tbody>
</table>
3.3 **ANALYSE VAN DE HABITATTYPES MET KNELPUNTEN EN OORZAKEN**

Om dezelfde redenen zoals aangehaald bij deelzone ‘Torfbroek’ zijn de grondwaterafhankelijke vegetaties erg kwetsbaar voor verdroging en verontreiniging.

Habitatwaardige bossen bestrijken het grootste deel van deze deelzone. Vermoedelijk is de basenstatus van de bodem hier actueel een minder groot probleem dan de nutriëntenstatus: de bodem is van oorsprong mineraalrijk en op vele plaatsen wordt met (zeer) mineraalrijk stikstof worden gemodelleerd. De prognoses 2025 en 2030 zijn gebaseerd op de modelleringen via het BAU-scenario (zie leeswijzer).

Figuur 3.9 Overschrijding van de kritische depositiewaarde van de actueel aanwezige habitats, op basis van de gemodelleerde stikstofdeposities volgens het VLOPS17-model, dat gebruik maakt van emissie- en meteogegevens van het jaar 2012, en de vectoriële habitatkaart, uitgave 2016 (De Saeger et al. 2016)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91E0</td>
<td>Sub-Atlantische en midden-Europese wintereikenbossen of eikenhaagbeukbossen</td>
<td>20</td>
<td>170,07</td>
<td>170,07</td>
<td>22,98</td>
<td>19,15</td>
</tr>
<tr>
<td>91E0_va</td>
<td>Beekbegeleidend vogelkers-essenbos en essen- iepenbos</td>
<td>28</td>
<td>76,56</td>
<td>1,97</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>91E0_vm</td>
<td>Meso- tot oligotroof elzen- en berkenbroek</td>
<td>26</td>
<td>1,15</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>91E0_vn</td>
<td>Ruigte-elzenbos (Filipendulo-Alnetum)</td>
<td>26</td>
<td>14,64</td>
<td>7,06</td>
<td>0,30</td>
<td>0,00</td>
</tr>
<tr>
<td>Eindtotaal</td>
<td></td>
<td></td>
<td>325,42</td>
<td>241,33</td>
<td>29,06</td>
<td>24,93</td>
</tr>
</tbody>
</table>
grondwater de basenstatus aangevuld. De focus ligt hierom vooral op inperken van de nutriënten.

Te weinig dood hout is ook een belangrijk knelpunt waar deze bossen mee te kampen hebben. Voor veel habitattpische soorten (waaronder zwarte specht en tal van vleermuizen) zijn deze bossen bovendien ook versnippemd (met allerlei randeffecten als rustverstoring en genetische isolatie tot gevolg) en zijn er onvoldoende oude en dode bomen, open plekken en mantel- en zoomvegetaties aanwezig. Door een veranderend bosbeheer (omzetting van middelhout naar hooghout in de eikenbossen; hogere houtvoorraden) is het bos de laatste 50-100 jaar donkerder geworden, wat voor een aantal lichtbehoevende soorten tot afnames heeft geleid. Veelal is er een abrupte overgang tussen de gesloten habitattypen (bos) enerzijds en open habitattypen of het omgevend landschap anderzijds. Zowel op vlak van structurele verbondenheid als op vlak van kwaliteit zijn er dus verbeteringen nodig aan de booshabitattypes (Agentschap voor Natuur en Bos, 2011).

3.4 **HERSTELMAATREGELEN**

De herstelmaatregelen en hun prioriteit voor deze deelzone zijn opgenomen in bijlage 1, die integraal deel uitmaakt van dit rapport.

Aangewezen habitattypen waarvoor geen gebiedsgerichte prioriteitstelling is opgemaakt

- **7140**: komt actueel niet voor in deze deelzone, maar er zijn wel zoekzones waarvan de KDW van dit type overschreden is. Pas bij realisatie van de doelen is de locatie gekend en kan een gebiedsgerichte invulling gebeuren.

Voor deze habitattypen geldt de globaal gestelde prioritering van PAS-herstelmaatregelen, zoals bepaald en beargumenteerd in de Algemene herstelstrategie.

Voor de bossen zijn vooral twee herstelmaatregelen prioritair te bestempelen. Het aanleggen van schermbossen biedt de mogelijkheid om de instroom van stikstof te beperken. Vooral langs de autostrade (E19) is dit essentieel, maar ook op andere plaatsen kan een degelijk scherm (met zowel een zoom als een mantel) de kwaliteit van de bosrand verbeteren. Ingrijpen in de bosstructuur waarbij er gezorgd wordt voor het vergroten van de lichtinval tot op de bodem, helpt de opstapelning van stroomsel (en dus ook van nutriënten) te beperken. Ook de afvoer van biomassa draagt hiertoe bij, maar hier dient gewaakt te worden dat het volume dood hout het liefst absoluut en zeker relatief (tov het volume levend hout) nog verder kan stijgen. Het verbreden en/of maaien van bospaden kan ook hiertoe gerekend worden. Dit alles past binnen de IHD-doelstellingen ‘Aandacht voor mantel- en zoombeheer’ en ‘Versterken van de bossen’.

Voor de grondwatergebonden habitattypen is vooral het herstel van de kwaliteit van het grondwater belangrijk. De instroom van stikstof en/of sulfaten kan beperkt worden door het aanleggen van buffergebieden (bijv. schermbos), door het propageren van het toepassen van evenwichtsbemesting of het toevoegen van organisch materiaal met een hoge C/N verhouding.

Voor de valleibossen is ook de verbetering van de kwaliteit van het oppervlaktewater noodzakelijk. Het afkoppelen of het saneren van puntlozingen op de Trawoolbeek is hierbij een aandachtspunt. Het uitbreiden van de RWZI met een tertiaire zuiveringscomponent zou heel
de vallei van de Barebeek ten goede komen. Dit kadert in het prioritaire IHD-doel ‘Verbetering van de kwaliteit van het oppervlaktewater’.

Voor de open habitattypen is maaien de belangrijkste herstelmaatregel. De actuele habitatvlekken zijn dusdanig klein dat er ook een versterking door uitbreiding nodig is. Vele graslandwaarden zijn nu beperkt tot de bermen. Een aangepast bermbeheer kan daarom een belangrijke bijdrage leveren.

3.5 **KENNISLACUNES**

Voor de realisatie van de tot doel gestelde blauwgraslanden in de omgeving van de Dode beek is de huidige hydrologie een kennishiaat. Ook de actuele grondwaterkwaliteit is hier nog een onbekende factor.

Algemeen is er weinig gekend over de grondwaterdynamiek. In welke mate heeft de toename van de verharde oppervlakte (verstedelijking en aanleg luchthaven) hier geleid tot verdroging. Het beperken van de verdroging binnen het SBZ is een prioritaire IHD-doelstelling.

Het ontbreekt ook nu aan de nodige gegevens om te kunnen bepalen in welke mate de valleibossen beïnvloed worden door de grondwaterkwaliteit.
4 DEELZONE WEESBEEK-EN MOLENBEEKVALLEI
(2400010_C)

4.1 UITVOERIGER LANDSCHAPSECOLOGISCHE SYSTEEMBESCHRIJVING

4.1.1 Topografie - hydrografie

Ook deze deelzone situeert zich in het overgangsgebied tussen het reliëfrijke Brabantse leemplateau (hoogten boven de 60 m) en de meer noordelijk gelegen en vrij vlakke zandleemstreek (zelden hoger dan 30 m) van Laag-België. Meer bepaald bevindt het zich juist aan de voet van het Leemplateau. De overgang (de zgn. Vlaams-Brabantse steilrand) verloopt er vrij abrupt: op minder dan een kilometer stijgt men meer dan 40 m. In het gebied variëren de hoogten tussen de 14-45 m TAW (Figuur 4.1) en is de topografie vrij egaal, uitgezonderd in de zuidwestelijke hoek.

De deelzone wordt ontwaterd door verschillende kleine beken, die alle buiten, maar in de onmiddellijke omgeving van het SBZ ontspringen. Op een aantal plaatsen in de vallei ligt er een soms fijnmazig netwerk van drainagegreppels. De meeste greppelstructuren zijn historisch, maar in het Silsombos werden ook nog in het einde van de 20ste eeuw verschillende drainagegrachten gegraven of uitgediept.

De belangrijkste beken binnen deze deelzone zijn de Molenbeek en de Weesbeek (Dijlebekken). Deze beken drukken meer dan in de andere deelzones hun stempel op het gebied. De Molenbeekvallei heeft een typische structuur van een beekvallei waarin een beek verschillende molens aandreef. De beek zelf werd verlegd en plaatselijk opgehoogd en er werd een en soms een tweede leigracht gegraven om de diepste gelegen valleidelen (komgronden) te kunnen ontwateren. Omwille van het verplaatsen van de Molenbeek kruisen de grachten en de Molenbeek mekaar een aantal keer, wat zorgt voor een vrij complex drainagenetwerk, van waaruit af en toe ook lekverliezen richting vallei optreden.

De Weesbeek daarentegen is in deze deelzone een kleinschaligere beek, met een natuurlijkere oeverstructuur. Het centrale deel van deze vallei is ook nauwelijks vergraven: een greppelstructuur ontbreekt hier. De lage oevers kunnen niet beletten dat de beek bij piekafvoeren overstroomt. Door de collectering van (niet-gescheiden) afvalwater is de overstromingsfrequentie verminderd.
Figuur 4.1 Hoogteligging (DHM-1m) en hydrografie met in uitsnede detailtopografie met een fijnmazig rabattenstructuur, de centraal diep gelegen leigrachten en de Molenbeek met verhoogde oevers
4.1.2 Bodem

De alluviale vallei is bedekt met leem/kleibodems. De infiltratiezone in de zuidwestelijke hoek is zanderig (Figuur 4.2). In de komgronden is de bodem zo rijk aan organisch materiaal dat hij een venig karakter krijgt. Op een aantal plaatsen is er (afwijkend van de bodemkaart) effectief sprake van het voorkomen van veenafzettingen. Die zijn hier echter niet degelijk in kaart gebracht. Met name in het zuidelijke (west-oost verlopende) deel van de vallei is er veel veen geaccumuleerd maar ook meer stroomafwaarts de Molenbeek (Veltem-Beisem) zijn er ook veenlaggen te vinden die tot meer dan een halve meter dik kunnen zijn.

Typisch voor deze SBZ is dat in de beekvallei op vele plaatsen de alluviale processen, die verbonden waren met de oude loop van de Demer (Van Esbroeck, 1935), al duizenden jaren zijn stilgevallen. In de van oorsprong alluviale bodems primeren bijgevolg de bodemvormingsprocessen op de alluviale processen. Hierdoor hebben ze een bodemprofiel gekregen: structuur B-horizont op de nattere bodems, sterk gevlekte textuur B (pseudo-gley) op de drogere. Op deze ‘pseudo-gley’-bodems is er sprake van de vorming van stuwwatertafels. Deze oud-alluviale bodems liggen vooral in de vallei van de Weesbeek aan de oppervlakte. In de Molenbeekvallei is een groot deel van deze oud-alluviale bodems overdekt met alluviale afzettingen van recentere datum.

![Bodemkaart](image-url)
4.1.3 Geohydrologie

De geohydrologie is goed vergelijkbaar met deze van de twee vorige deelzones. De watervoerende lagen bestaan uit een opeenvolging (van oud naar jong) van zanden van de formatie van Brussel (HCOV: 0620) (geel gekleurde laag in Figuur 4.3) en Lede (oranje), de fijne kleihoudende zanden van St. Huibrechts Herb (lila) en bovenaan de kleiige zanden van de Formatie van Diest (roos). Het geheel wordt afgedekt door een lemige quartaire deklaag (donkergel). De eerste drie geologische afzettingen zijn uitgesproken tot gewoon mineraalrijk, de formatie van Diest is mineraalarmer. Alle lagen hellen in noord-noord-oostelijke richting af.

In deelzone dagzoomt kalkrijk Brusseliaan. Bovenop het Brusseliaan ligt nog een Quartair-pakket oud-alluviale bodems. De dikte van deze laag is niet goed bekend, bij een boring in de Molenbeekvallei vond men een dikte van 5 meter. De laag is opgebouwd uit geërodeerd tertiair materiaal en is overwegend kleihoudend zand (Brusseliaan – Diestiaan). Het oud-alluvium vormt tezamen met het Brusseliaan de freatische grondwaterlaag.

De grootste delen van de vallei staan onder invloed van regionale kwel (Figuur 4.4). De kweldruk bedraagt 2 - 10 mm/dag en meer (Batelaan et al., 1996). De (regionale) kweldruk is het sterkst in het zuidelijke deel (Molenbeekvallei) en in de bronhoofden van de Weesbeek. De zones met de hoogste kweldruk liggen binnen het SBZ, uitzonderd deze voor het bronhoofd van de Weisetterbeek (gelegen in het noordoosten van deelzone).

Het voedingsgebied bevindt zich ook hier vrijwel volledig buiten het studiegebied en gezien de helling van lagen stroomt het water ook in noord-noord-oostelijke richting. Het gaat over uitgesproken mineraalrijk grondwater.
Figuur 4.3 Geologische doorsnede van het gebied. Situering ZW - NO -transect (boven), 2D-doorsnede (midden), 3D-doorsnede (onderaan) (Mathijs et al, 2013)
Figuur 4.4 Links: zones met regionale kwel (Batelaan et al., 1996), rechts: het infiltratiegebied voor een gedeelte van de deelzone Geel: verblijftijd grondwater 0-5 j, groen 5-20 j en blauw >20 j (De Becker, 2007)
4.1.4 Grondwaterdynamiek

In de zones met een hoge kwel zijn stabiele grondwaterstanden te verwachten, met schommelingen die maximaal 40 cm per jaar bedragen (zie bijv. MOLP009 en MOLP013 in Figuur 4.5). Naarmate de kwel afneemt, stijgen ook de schommelingen en bedragen dan 80 cm en meer (zie bijv. MOLP015). Op deze verschillen in kwel, superponeert zich het effect van de

Figuur 4.5 Grondwaterpeilen (t.o.v. maaiveld) in een transect dwars op de Molenbeek (bron: Watina-databank)
lokale drainage: variërend van een lichte mate door een oppervlakkige begreppeling tot een sterk effect door beken. Figuur 4.5 geeft aan dat in de Molenbeekvallei het drainage-effect van de Molenbeek zich uitstrekt van minstens 50m tot 80m.

4.1.5 Grondwaterchemie

Het aangevoerde grondwater is basisch, (zeer) mineraalrijk (conductiviteit: 550 – 1000 µS/cm), kalkrijk (Ca: 100 – 150 mg/l) en (zeer) arm aan fosfaten (Figuur 4.6). Vooral wanneer het grondwater door Destiaanzanden heeft gestroomd, is het grondwater ook ijzerrijk.

Nutriëntenvrachten zijn over het algemeen vrij laag maar een paar meetpunten (net ten westen van de dorpskern van Beisem) vertonen over de volledige bemonsteringsperiode steevast hoge nitraat- (en in mindere mate ook nitriet-) en orthofosfaatconcentraties, te wijten aan een overstort.

De sulfatconcentraties zijn op meerdere plaatsen verhoogd. De verhoogde sulfatconcentraties vallen niet altijd samen met de meetlocaties waarin verhoogde nutriëntenconcentraties gemeten worden. Dat wijst op denitrificatie van insijpelend nitraatrijk grondwater in het grondwatervoedingsgebied. Dat is niet verwonderlijk aangezien nogal wat van dat infiltratiegebied onder landbouw en urbaan gebied ligt. Er lijkt zich evenwel een dalende trend af te tekenen.

Figuur 4.6 Spreiding van de belangrijkste hydrochemische variabelen voorgesteld aan de hand van boxplots (de onderkant van de box is het eerste kwartiel, de bovenkant het derde kwartiel, de lijn in het midden is de mediaan; de verticale lijnen naar onder en naar boven gaat tot aan de meetwaarde die nog binnen anderhalve keer de interkwartielafstand vanaf de box liggen en meetwaarden die hierbuiten liggen zijn als punten weergegeven). De horizontale streepjeslijnen geven het 10% en 90% percentiel van alle meetwaarden in de Watina databank en dienen enkel om de waarden van de deelzone te situeren ten opzichte van de globale toestand van het Watina net in Vlaanderen. Indien voor een locatie van meerdere tijdstippen een meting beschikbaar was, werd de mediane waarde van deze tijdsreeks berekend

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4.1.6 Oppervlaktewater

Vooral de vallei van de Molenbeek is gevoelig voor overstromingen (Figuur 4.7). Bepaalde zones overstromen er effectief. Ook langs de Weesbeek komen er lokaal overstroomingszones voor.

Van het beekwater zijn er enkel van het centraal en noordelijk deel recente (>2000) kwaliteitsmetingen bekend (bron: geoloket VMM). In de jaren negentig was de kwaliteit van het beekwater door rechtstreeks afvalwater over heel het traject zeer slecht. Sinds de opstart van een rioolwaterzuiveringsinstallatie (RWZI) is de biologische en de fysico-chemische kwaliteit van zowel de Wees- als de Molenbeek zichtbaar en meetbaar verbeterd. De enkele meetpunten geven tegenwoordig een matig tot goede biologische en fysico-chemische kwaliteit. In 2013 kreeg een meetpunt in de Molenbeek voor de BBI zelfs de max. score (bron: website VMM.be meetpunt 383500). Van enkele toevoerbeekjes is de kwaliteit evenwel nog slecht. Ook het effluent van de RWZI zelf is, door het ontbreken van een tertiaire zuivering, nog (matig) nitraat- en (matig) fosfaatrijk.
Bij hevige neerslag blijft ongezuiverd rioolwater via enkele overstorten in het oppervlaktewater terecht komen. Via sporadische overstromingen en lekverliezen stroomt af en toe vervuild water in de vallei.

Van de kwaliteit van het stilstaand oppervlaktewater zijn geen gegevens bekend.

4.1.7 Vegetatiezonering

Voor deze deelzone zijn zowel de zonering voor de gesloten als voor de open sfeer relevant. Voor de gesloten sfeer kan verwezen worden naar deelzone ‘Floordambos/Hellebos-Snijselsbos-complex’. Voor de open sfeer is deze van deelzone ‘Torfbroek’ van toepassing. In deze deelzone komen echter ook zones voor met minder kalk. Dit vertaalt zich vooral in de natte sfeer in andere verlandingsvegetaties en open water-vegetaties die resp. kunnen gerekend worden tot circum-neutraal overgangsveen (7140_meso) of kleine ziggenvegetaties (rbbms) en tot van nature eutrofe wateren (3150).

4.1.8 Historische landschapsontwikkeling

De landschapsontwikkeling is in deze deelzone heterogeen verlopen. In het noordelijk deel zijn er enkele historische boscomplexen (Kareelbos en domein van Wilder), die ook vandaag nog een bosgebruik kennen. Voor het overige was het gebied 18e en 19e eeuw (Figuur 4.8 en Figuur 4.9) een lappendeken van historische bosjes en graslanden. Vooral in de tweede helft 19e eeuw was het landschapsbeeld vrij open. Dit beeld is vooral in de tweede helft van de 20ste eeuw sterk gewijzigd, vooral door de graslanden op vrij algemene schaal met populieren te beplanten. Het zuidelijk deel van de Molenbeekvallei (Merodebossen, Rotte Gaten) werd al eind 19e-begin 20ste eeuw herbebost.
Figuur 4.8 Historische kaart Ferraris (+/- 1777)
De vijvers zijn van recente oorsprong (>1960), uitgezonderd de parkvijver van de Merode (begin 20ste eeuw) en enkele kleine (veen?)putjes (<18e eeuw) in diezelfde omgeving (Rotte gaten).

Uitgezonderd enkele landbouwclaves en enkele percelen aan de zuidkant gelegen, geldt voor de percelen gelegen binnen de deelzone dat ze tot op heden geen intensief landbouwgebruik hebben gekend.

4.2 STIKSTOFDEPOSITIE

Tabel 4.1 Kritische depositiewaarde (KDW), totale oppervlakte en oppervlakte in overschrijding (actueel en prognose voor 2025 en 2030) voor de actueel binnen de deelzone aanwezige habitattypen

<table>
<thead>
<tr>
<th>code</th>
<th>naam</th>
<th>KDW (kg N/ha/jaar)</th>
<th>totale oppervlakte (ha)</th>
<th>oppervlakte in overschrijding (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3140</td>
<td>Kalkhoudende oligo-mesotrofe stilstaande wateren met benthische Chara spp. vegetaties</td>
<td>8</td>
<td>0,10</td>
<td>0,10 0,10 0,10</td>
</tr>
<tr>
<td>6230_ha</td>
<td>Soortenrijke graslanden van het struisgrasverbond</td>
<td>12</td>
<td>1,07</td>
<td>1,07 1,07 1,07</td>
</tr>
<tr>
<td>6230_hn</td>
<td>Droog heischraal grasland</td>
<td>12</td>
<td>0,09</td>
<td>0,09 0,09 0,09</td>
</tr>
<tr>
<td>6410_mo</td>
<td>Basenrijke Molinion-graslanden (Blauwgraslanden s.s.)</td>
<td>15</td>
<td>0,17</td>
<td>0,17 0,17 0,17</td>
</tr>
</tbody>
</table>

Figuur 4.9 Historische kaart Vandermaelen (+/- 1846)
Voedselrijke zoomvormende ruigten

Voedselrijke zoomvormende ruigten of regionaal belangrijk biotoop moerasspirearuigte met graslandkenmerken

Vochtige tot natte moerasspirearuigten

Laaggelegen schraal hooiland: glanshaververbond of geen habitattype uit de Habitatrichtlijn

Laaggelegen schraal hooiland: glanshaververbond (sensu stricto)

Atlantische zuurminnende beukenbossen met Ilex en soms ook Taxus in de ondergroei

Atlantische zuurminnende beukenbossen met Ilex en soms ook Taxus in de ondergroei of geen habitattype uit de Habitatrichtlijn

Sub-Atlantische en midden-Europese wintereikenbossen of eikenhaagbeukbossen

Zachthoutooibos

Beekgeleidend vogelkers-essenbos en essen-iepenbos

Meso- tot oligotroof elzen- en berkenbroek

Ruigte-elzenbos (Filipendulo-Alnetum)

Eindtotaal

4.3 ANALYSE VAN DE HABITATTYPES MET KNELPUNTEN EN OORZAKEN

Om dezelfde redenen aangehaald bij deelzone ‘Torfbroek’ zijn de grondwaterafhankelijke vegetaties erg kwetsbaar voor verdroging en verontreiniging.

De huidige productie van de actuele open habitattypen is nog zo hoog dat voor de meeste percelen minstens twee maaibeurten per jaar nodig zijn. Oorzaken hiervan zijn vooral dat het meestal om een omvormingsbeheer gaat, vertrekende van een bosbeplanting. Ook de waterhuishouding (drainage) kan een productieverhogende factor zijn.

Teveel exoten en te weinig dood hout zijn belangrijke knelpunten waar deze bossen mee te kampen hebben. Voor veel habitattypische soorten (waaronder zwarte specht en tal van vleermuizen) zijn deze bossen bovendien ook versnipperd (met allerlei randeffecten als rustverstoring en genetische isolatie tot gevolg) en zijn er onvoldoende oude en dode bomen, open plekken en mantel- en zoomvegetaties aanwezig. Door een veranderend bosbeheer (omzetting van middelhout naar hooghout in de eikenbossen; hogere houtvoorraden) is het bos de laatste 50-100 jaar donkerder geworden, wat voor een aantal lichtbehoevende soorten tot afnames heeft geleid. Veelal is er een abrupte overgang tussen de gesloten habitattypen enerzijds en open habitattypen of het omgevend landschap anderzijds. Zowel op vlak van structurele verbondenheid als op vlak van kwaliteit zijn er dus verbeteringen nodig aan de boshabitattypes (Agentschap voor Natuur en Bos, 2011).

Voor het herstel van gemeenschappen gebonden aan of onder invloed van oppervlaktewater geldt vaak dat ze nog hinder ondervinden van historische slibverontreiniging. Ook inspoeling van lokaal verontreinigd water of overstorten kunnen het herstel bemoeilijken.

4.4 HERSTELMAATREGELEN

De herstelmaatregelen en hun prioriteit voor deze deelzone zijn opgenomen in bijlage 1, die integraal deel uitmaakt van dit rapport.

**Aangewezen habitattypen waarvoor geen gebiedsgerichte prioriteitstelling is opgemaakt**

- **7140**: actueel wel aanwezig in de deelzone, maar dit blijkt niet uit de habitatkaart. Reden hiertoe is dat de huidige habitatvlekken klein zijn en het herstel van recente datum is.

Voor dit habitattype geldt de globaal gestelde prioritering van PAS-herstelmaatregelen, zoals bepaald en beargumenteerd in de Algemene herstelstrategie.

Voor de bossen zijn vooral twee herstelmaatregelen prioritair te bestempelen. Het aanleggen van schermbossen biedt de mogelijkheid om de instroom van stikstof te beperken. Bij vele bosbestanden kan een degelijk scherm (met zowel een zoom als een mantel) de kwaliteit van de bosrand verbeteren. Ingrijpen in de bosstructuur waarbij er gezorgd wordt voor het vergroten van de lichtinval tot op de bodem, helpt de opstapeling van strooisel (en dus ook van nutriënten) te beperken. Ook de afvoer van biomassa draagt hiertoe bij, maar hier dient gewaakt te worden dat het volume dood hout het liefst absoluut en zeker relatief (t.o.v. het volume levend hout) nog verder kan stijgen. Het verbreden en/of maaien van bospaden kan...
ook hiertoe gerekend worden. Dit alles past binnen de IHD-doelstellingen ‘Aandacht voor mantel- en zoombeheer’ en ‘Versterken van de bossen’.

Voor de grondwatergebonden habitattypen is het herstel van de kwaliteit van het grondwater belangrijk. De instroom van stikstof en/of sulfaten kan beperkt worden door het aanleggen van buffergebieden (bijv. schermbos), door het propageren van het toepassen van evenwichtsbemesting of het toevoegen van organisch materiaal met een hoge C/N verhouding. In deze deelzone kan door het optimaliseren van het greppelsysteem nog een aanmerkelijke verbetering van de kwaliteit gerealiseerd worden.

Voor de open habitattypen is maaien de belangrijkste herstelmaatregel. De actuele habitatvlekken zijn nog klein en sommige ook geïsoleerd, dat er ook een versterking door uitbreiding nodig is. Voor kransvierkante wateren (H3140) vergt ook het herstel van het open karakter (opslag verwijderen, vrijzetten oevers en vegetatie ruimen) belangrijke inspanningen. Deze maatregelen kaderen ook in de IHD-doelstellingen ‘Herstel van blauwgraslanden in Torfbroek, Silsom- en Snijselsbos’ en ‘Versterken en beschermen van de water- en moerashabitats in Torfbroek en Somsbos’.
5 DEELZONE KASTANJEBOS (2400010_D)

5.1 UITVOERIGER LANDSCHAPSECOLOGISCHE SYSTEEMBESCHRIJVING

5.1.1 Topografie - hydrografie

Het is een vrij zacht in noordelijke richting afhellend gebied in het dalhoofd van de Lipsebeek en zijbeekjes in het oosten en de Mastellebeek-Weisetterbeek in het westen. Dit zijn geen alluviale systemen in de letterlijke betekenis van het woord (zie verder), het gebied situeert zich in het dalhoofd van de alluviale waterloopjes. De topografie is er vlak: in het gebied variëren de hoogten slechts tussen de 20-25 m TAW. Vooral de plaatsen met historisch bos kenmerken zich door een fijnmazig netwerk van greppels. Dat wijst erop dat de omstandigheden hier ten minste in een belangrijk deel van het jaar nat moeten zijn of waren.

Figuur 5.1 Algemene topografie voor het Kastanjebos met detailtopo-/hydrografie in uitsnede
5.1.2 Bodem

De alluviale vallei is bedekt met (zand)leembodems (Figuur 5.2). Veenbodems of permanent zeer natte bodems komen en kwamen in dit gebied niet voor.

Typisch voor deze SBZ is dat in de van oorsprong alluviale beekvallei op vele plaatsen de alluviale processen, die verbonden waren met de oude loop van de Demer (Van Esbroeck, 1935), al duizenden jaren zijn stilgevallen. In deze bodems primeren bijgevolg de bodemvormingsprocessen op de alluviale processen. Hierdoor hebben ze een bodemprofiel gekregen: structuur B-horizont op de nattere bodems, sterk gevlekte textuur B (pseudo-gley) op de drogere. Op ‘pseudo-gley’-bodems is er sprake van de vorming van stuwwatertafels. Oud-alluviale bodems dagzomen in heel de deelzone.

Aan de zuidrand hebben heel waarschijnlijk ook colluviale processen een rol in de bodemontwikkeling gespeeld.

5.1.3 Geohydrologie

Het (enige) watervoerende pakket waaruit het grondwater afkomstig is dat in dit gebied aan de oppervlakte komt is, zijn de grove, kalkrijke zanden van de formatie van Brussel (zie Figuur 4.3, het Kastanjebos is uiterst rechts gelegen).

Figuur 5.2 Bodemkaart
Ook deze deelzone maakt deel uit van de fossiele vallei van de oer-Demer (Van Esbroeck, 1935). De Smedt (1973) heeft deze vallei, een riviergeul, hier in detail bestudeerd. In de geul is hier naast ander alluvium ook flink wat grind afgezet (Figuur 5.3). Die grindafzettingen zijn onder het Kastanjebos vrij dik en omvangrijk, meteen ook de reden waarom hier een grondwaterwinning werd uitgevoerd. Het onderaan zandige en bovenaan lemige quartaire dek is hier beperkt tot een paar meter dikte. In het noordelijk deel van het Kastanjebos is het wat dikker.

Voor het gebied werd een regionaal grondwatermodel opgemaakt (Batelaan et al., 1996) (Figuur 5.4). Dat model berekende voor een groot deel van het gebieden een middelmatige kwel (2 tot 10 mm/dag), een kleiner deel met hoge (> 10 mm/dag) of lage kwel (< 2 mm/dag). Opvallend is dat deze zones uitsluitend in het oosten gesitueerd werden. Gezien de modelschaal kan de vraag gesteld worden of dit in werkelijkheid ook zo is. Er ontspringen in het westelijk deel ook kleine beekjes, zodat hier op zijn minst sprake is van een lokale kwel.

De infiltratiegebieden omvatten zowel zanden van de formatie van Brussel, als van Diest (bijv. t.h.v. Bertembos). en dat de infiltratiezone grotendeels ca. 3-4 kilometer en tot 6-7 km naar het zuiden reikt.

![Figuur 5.3 Detaildoorsnede van de ondergrond in de omgeving van het Kastanjebos (naar De Smedt, 1973)](image-url)

Hoewel er zeer weinig over de samenstelling van de oud-alluviale bodems is geweten, zijn ze vermoedelijk (zie C1-3) goed doorlatend. Net ten zuiden van het gebied ligt een Diestiaanmassief waaronder nog dunne afzettingen van St.-Huibrechts-Hern en lede voorkomen. Die lagen spelen hier echter geen betekenisvolle rol . Onderaan wordt het hydrologische systeem hier begrensd door de kleien van de formatie van Kortrijk (destijds bekend onder de naam leperiaan).

De zanden van Brussel hebben een erg hoge hydraulische geleidbaarheid, het gaat hier met andere woorden om een snel hydrologisch systeem waarin de verblijftijden van het grondwater kort (ca. 20 jaar) zijn.

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
5.1.4 Grondwaterdynamiek

Op basis van de detailbegreppeling in het gebied (zie Figuur 5.1) en de bodemkaart (drainageklasse .h. op Figuur 5.2) kan aangenomen worden dat er ten minste in het winterhalfjaar peilen in de buurt van of boven het maaiveld staan. In tijdreeksen van grondwaterpeilmetingen (Figuur 5.5) is te zien dat het grondwaterpeil in het winterhalfjaar gedurende een (erg korte) periode gelijk staat met het maaiveld. Dat is de periode waarin het rabattensysteem in het Kastanjebos gevuld is met water. Vrij snel daalt het grondwater en zakt (erg) diep weg, en dat nagenoeg overal in het gebied (Figuur 5.5). Laagste grondwaterstanden van 2 meter onder maaiveld en meer waren 20 jaar geleden de regel, tegenwoordig zakken de peilen in het kwelgebied al wat minder diep (1.5 meter en minder). In het infiltratiegebied is de diepte van het peil afhankelijk van de lokale topografie.
5.1.5 Grondwaterchemie

Het grondwater is, afkomstig uit de zanden van de formatie van Brussel, zeer uitgesproken mineraalrijk (Ca en HCO₃).

In het hele gebied zijn verhoogde orthofosfaat, nitriet en nitraatconcentraties te meten, evenals verhoogde sulfaatconcentraties (Figuur 5.6). Dat wijst op instroom van met nutriënten aangerijkt grondwater. De fosfaatconcentraties zijn niet extreem hoog, maar aangezien ze samen lopen met de stikstofinstroom heeft dit een productie verhogend effect op de vegetatie. De soms zeer hoge sulfaatconcentraties wijzen erop dat er met nitraat aangerijkt grondwater infiltreert in het grondwatervoedingsgebied.

Figuur 5.5 Tijdreeks van grondwaterpeilmetingen aan de zuidrand van het Kastanjebos (rechts, bron: data.inbo.be/watina), locatie peilbuizen: P01 in infiltratiezone, P02 in een kwelzone (links)
5.1.6 Oppervlaktewater

Overstromingen zijn in dit gebied uiterst uitzonderlijk tot zo goed als afwezig. De Lipsebeek, Weisetterbeek en Mastellebeek transporteren een klein debiet, en het optreden van piekdebieten is nergens terug te vinden. Er zijn geen oppervlaktewaterkwaliteitscijfers voor deze beken binnen deze deelzone beschikbaar. Een VMM-meetpunt stroomafwaarts toont nog op een duidelijke vuilvracht en ook uit recente zichtwaarnemingen binnen de deelzone kan afgeleid worden dat vermoedelijk nog aanzienlijke huishoudelijk afvalwatervrachten het gebied instromen via een aantal beken en grachten aan de zuidkant.

5.1.7 Vegetatiezonering

Hier wordt een ‘klassieke’ vegetatiezonering teruggevonden voor de leemstreek (Figuur 5.7). We beschrijven hier zonering volgens een zuid-noord-transect. Op de hoogste (zuidelijkste) delen ontwikkelen zich glanshavergraslanden (6510_hu). Iets lager op de helling zijn dottervegetaties (rbbhc) te vinden, o.a. met herfsttijloos. Op vochtige onbemoste bodems met kwel kunnen zich schraallandvegetaties ontwikkelen (6410_mo). Tot einde 20ste eeuw was er nog een dergelijke vegetatie (gevlekte orchis, blauwe knoop, blauwe zegge, pijpenstrootje...).
Meer noordelijk in het gebied komt vrijwel uniform eikenhaagbeukenbos (9160) voor. Hier zijn geen open vegetaties meer voorhanden, maar uit vegetatie op de tijdelijke kapvlakten valt op te maken dat hier een ruige vorm van moerasspirearuigte (rbbhf) tijdelijk ontwikkeld.

Uit grondwater- en ecohydrologische modellering voor het gebied valt op te maken dat de situatie bij nulpompen (i.e. de grondwaterwinning uitzetten), wel degelijk een nattere situatie zou ontstaan. Uit die studies blijkt eveneens dat er hier (zoals dat voor de Molenbeekvallei, Silsombos en Torfbroek wel het geval is), destijds (voor de periode van de grondwaterwinning) zones zouden voorgekomen hebben waar er zich constante grondwatertafels tegen of net onder maaiveld zouden voordoen. Met andere woorden, als de grondwaterwinning volledig wordt stilgelegd, zal de situatie natter worden (er zouden waarschijnlijk meer dottergrassen voorkomen en de alluviale elzen-essenbossen (91EO_va) zou worden vervangen door mesotrof elzenbroek (91EO_vm) en het eikenhaagbeukenbos zou grotendeels worden vervangen door alluviaal elzen-essenbos. Kalkmoeras of andere vegetatiertypen van die strekking kunnen in het Kastanjebos meer dan waarschijnlijk niet tot ontwikkeling komen.

**5.1.8 Historische landschapsontwikkeling**

Vergelijken we de actuele bosoppervlakte met deze 270 jaar geleden (Figuur 5.8) dan valt een grote gelijkenis op. Toenmalig maakte het Kastanjebos tezamen met het Kareelbos en het Silsombos deel uit van een relatief groot boscomplex. Vooral in het oostelijk deel van het gebied is er actueel bos, dat meer dan een eeuw geleden een graslandgebruik heeft gekend (zie Figuur 5.9 en Figuur 5.10). In het westelijk en vooral in het centraal deel is de beboste oppervlakte vrij constant gebleven.

Het bosbeheer was grotendeels middelhout- of hakhout. Het bestaan van oude boswallen en een poel in het bos doen vermoeden dat delen ook in zekere mate begraasd werden.

In de 20ste eeuw werd op vrij grote schaal populier ingeplant.
Figuur 5.8 Historische kaart Villaret (1745-1748)

Figuur 5.9 Historische topografische kaart (+/- 1891)
5.2 STIKSTOFDEPOSITIE

Tabel 5.1 Kritische depositiewaarde (KDW), totale oppervlakte en oppervlakte in overschrijding (actueel en prognose voor 2025 en 2030) voor de actueel binnen de deelzone aanwezige habitattypen

<table>
<thead>
<tr>
<th>code</th>
<th>naam</th>
<th>KDW (kg N/ha/jaar)</th>
<th>totale oppervlakte (ha)</th>
<th>oppervlakte in overschrijding (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6410_mo</td>
<td>Basenrijke Molinion-graslanden (Blauwgraslanden s.s.)</td>
<td>15</td>
<td>0,67</td>
<td>0,67 0,67 0,67</td>
</tr>
<tr>
<td>6510,gh</td>
<td>Laaggelegen schraal hooiland: glanshaververbond of geen habitattype uit de Habitatrichtlijn</td>
<td>20</td>
<td>0,01</td>
<td>0,01 0,00 0,00</td>
</tr>
<tr>
<td>6510_hu</td>
<td>Laaggelegen schraal hooiland: glanshaververbond (sensu stricto)</td>
<td>20</td>
<td>0,53</td>
<td>0,53 0,00 0,00</td>
</tr>
<tr>
<td>9120</td>
<td>Atlantische zuurminnende beukenbossen met Ilex en soms ook Taxus in de ondergroei</td>
<td>20</td>
<td>4,37</td>
<td>4,37 0,00 0,00</td>
</tr>
<tr>
<td>9160</td>
<td>Sub-Atlantische en midden-Europese wintereikenbossen of eikenhaagbeukbossen</td>
<td>20</td>
<td>74,18</td>
<td>74,18 0,00 0,00</td>
</tr>
<tr>
<td>91E0 va</td>
<td>Beekbegeleidend vogelkers-essenbos en essen-lepenbos</td>
<td>28</td>
<td>3,99</td>
<td>0,00 0,00 0,00</td>
</tr>
<tr>
<td>Eindtotaal</td>
<td></td>
<td></td>
<td></td>
<td>83,75 79,76 0,67 0,67</td>
</tr>
</tbody>
</table>


Figuur 5.10 Bosleefatskaart
5.3 **ANALYSE VAN DE HABITATTYPES MET KNELPUNTEN EN OORZAKEN**

Sinds 1969 is een deel van het Kastanjebos in gebruik als waterwinningsgebied. Dit leidt minstens in een deel van het gebied tot een structurele verdroging. Tot in 1994 exploiteerde de VMW op het terrein twee typen van putten, ondiepe tot 14 m en diepe tot 45 m. Beide putten uit de Brusseliaanzandlaag. Tegenwoordig zijn uitsluitend nog de diepe putten operationeel en werd in 1994 een nieuwe vijfde diepe put in werking gesteld.

Zowel de kwaliteit van het grond- als van het oppervlaktewater kan het herstel hinderen. In het grondwater zijn de verhoogde nutriënt- en sulfaatconcentraties kritisch op te volgen. Voor het oppervlaktewater valt niet eenzelfde gunstige evolutie te noteren die in andere deelzones waarneembaar is.

Teveel exoten en te weinig dood hout zijn belangrijke knelpunten waar deze van oudsher middel/hakhoutbossen mee te kampen hebben. Voor veel habitattypische soorten (waaronder tal van vleermuizen) zijn deze bossen bovendien ook versnipperd (met allerlei randeffecten als rustverstoring en genetische isolatie tot gevolg) en zijn er onvoldoende oude en dode bomen, open plekken en mantel- en zoomvegetaties aanwezig. Door een veranderend bosbeheer (omzetting van middelhoog hout naar hooghout in de eikenbossen; hogere houtvoorraden) is het

---

Figuur 5.11 Overschrijding van de kritische depositiewaarde van de actueel aanwezige habitats, op basis van de gemodelleerde stikstofdeposities volgens het VLOPS17-model, dat gebruik maakt van emissie- en meteogegevens van het jaar 2012, en de vectoriële habitatkaart, uitgave 2016 (De Saeger et al. 2016)
bos de laatste 50-100 jaar donkerder geworden, wat voor een aantal lichtbehoevende soorten tot afnames heeft geleid. Veelal is er een abrupte overgang tussen de gesloten habitattypen (bos) enerzijds en open habitattypen of het omgevend landschap anderzijds. Zowel op vlak van structurele verbondenheid als op vlak van kwaliteit zijn er dus verbeteringen nodig aan de boshabitattypes (Agentschap voor Natuur en Bos, 2011).

5.4 HERSTELMAATREGELEN

De herstelmaatregelen en hun prioriteit voor deze deelzone zijn opgenomen in bijlage 1, die integraal deel uitmaakt van dit rapport.

Aangewezen habitattypen waarvoor geen gebiedsgerichte prioriteitstelling is opgemaakt

- 6230: komt actueel niet voor in deze deelzone, maar er zijn wel zoekzones waarvan de KDW van dit type overschreden is. Pas bij realisatie van de doelen is de locatie gekend en kan een gebiedsgerichte invulling gebeuren.

Voor dit habitattype geldt de globaal gestelde prioritering van PAS-herstelmaatregelen, zoals bepaald en beargumenteerd in de Algemene herstelstrategie.

Voor de bossen (H9120 en H9160) zijn vooral een aantal herstelmaatregelen prioritair te bestempelen. Twee ervan gelden generiek voor heel de SBZ, namelijk het aanleggen van schermbossen en het verbeteren van de structuur (zie hoger).

Voor de grondwatergebonden habitattypen is het herstel van de kwaliteit van het grondwater belangrijk. De instroom van stikstof en/of sulfaten kan beperkt worden door het aanleggen van buffergebieden (bijv. schermbos), door het propageren van het toepassen van evenwichtsbemesting of het toevoegen van organisch materiaal met een hoge C/N verhouding.

Voor de open habitattypen is maaien de belangrijkste herstelmaatregel. De actuele habitatvlekken zijn nog klein en geïsoleerd, dat een versterking door uitbreiding nodig is.

5.5 KENNISLACUNE

De invloed van de drinkwaterwinning is duidelijk zichtbaar in de tijdreeksen en laat zich zeker ook voelen in de vegetatie-ontwikkeling (herstel blauwgrasland (H6410) en grondwatergebonden bossen (H9160 en H91E0). Over de juiste reikwijdte van de winning loopt momenteel nog een onderzoek.
Referenties


Bijlage 1: BE2400010 Valleigebied tussen Melsbroek, Kampenhout, Kortenberg en Veltem
## PRIORITERING MAATREGELEN PAS HERSTELBEHEER DEELZONE BE2400010-A

<table>
<thead>
<tr>
<th>3140</th>
<th>Kalkhoudende oligo-mesotrofe wateren met benthische Chara spp. vegetaties</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDW (kgN/ha/jr) 8</td>
<td>Expertise: Terreinkennis</td>
</tr>
<tr>
<td>Essentieel habitattype binnen SBZ</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

### Maaien

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>Prioriteit in deelzone</th>
<th>1</th>
<th>Opmerking:</th>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>Prioriteit in deelzone</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strooisel verwijderen</td>
<td>2</td>
<td>Opmerking:</td>
<td></td>
<td></td>
<td>Opslag verwijderen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetatie ruimen</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Vrijzetten oevers

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>Prioriteit in deelzone</th>
<th>2</th>
<th>Opmerking:</th>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>Prioriteit in deelzone</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulatie voedselketen</td>
<td>2</td>
<td>Opmerking:</td>
<td></td>
<td></td>
<td>Herstel waterhuishouding: structureel herstel op landschapsschaal</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herstel waterhuishouding: herstel grondwaterkwaliteit</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking: Dit omvat hier vooral het omleiden van verontreinigd oppervlaktewater.</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: afbouw grote grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Herstel dynamiek wind</th>
<th>Tijdelijke drooglegging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.</td>
<td>Motivering: Het habitattype kan vooral bevorderd worden door opstuwing van greppels, echter een (oppervlakkige) drainage kan juist voor andere habitattypen (bijv. 91EO_va, 6410) nadelig zijn.</td>
<td>Motivering: Er is in deze deelzone geen structurele verdroging. De voedingsgebieden voor de aangemelde grondwaterafhankelijke habitattypen zijn relatief groot, wat de effectiviteit van deze maatregel verkleint.</td>
<td>Motivering: De windwerking is hier geen factor die de vegetatie-ontwikkeling in de vijvers stuurt.</td>
<td>Motivering: Tijdelijke drooglegging is voor vele vijvers technisch alleen haalbaar door bemaling. Het kan ook (zeer) nadelig zijn voor habitattypen die gebonden zijn aan verlandingsprocessen.</td>
</tr>
</tbody>
</table>

Opmerking: Opmerking: Opmerking: Opmerking: Opmerking:
### Habitattype 6410: Blauwgrasland

**KDW (kgN/ha/jr):** 15  
**Expertise:** Terreinkennis

SBZ is Essentieel gebied voor habitattype 6410  
B Voldoende effectief maatregelenpakket

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Toevoegen basische stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen 2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone 3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:**

- De opbouw van een organische bodem kan bij dit type gewenst zijn. Enkele lokale plagexperimenten gaven geen verschil met maaien dat minder intensief en ingrijpend (bijv. zaadbank) is.

**Opmerking:**

- Opmerking:

---

**Herstel waterhuishouding:**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone 2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Motivering:**

- Op sommige plaatsen zijn structurele maatregelen nodig om te
- Opmerking: Het habitattype staat hier weinig in contact met oppervlaktewater.
- Motivering: De aanvoer van nitraten of sulfaten dient verlaagd of zo laag mogelijk
- Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent
- Motivering: In de percelen is er een lokaal drainagesysteem aanwezig.
Vermijden dat blauwgrasland overstroomt met verontreinigd oppervlaktewater.

Overstroming met oppervlaktewater moet vermeden worden.

Gehouden te worden.

Grote grondwateronttrekkingen.

Het type is zowel gevoelig voor wijzigingen die de drainage bevorderen (door de verminderde invloed van mineraalrijk grondwater) als afremmen (door het wegdrukken van mineraalrijk grondwater met regenwater of door de aëratie te beperken).

<table>
<thead>
<tr>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
</tr>
</thead>
</table>

**Herstel waterhuishouding:**

Verhogen infiltratie neerslag

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Er is geen structurele verdroging in de vallei. De voedingsgebieden voor de aangemelde grondwaterafhankelijke habitattypen zijn relatief groot, wat de effectiviteit van deze maatregel verkleint.

Motivering: Aanleg van schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentieel open habitat.

| Opmerking: | Opmerking: |
**6510_hu**  | glanshaverhooiland (Arrhenaterion)  
KD (kgN/ha/jr) 20 | Expertise: /  
SBZ is Belangrijk gebied voor habitattype 6510 | B Voldoende effectief maatregelenpakket

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Begrazen</th>
<th>Op slag verwijderen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: afbouw grote grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Aanleg van schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentieel open habitat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Habitattype 7140: Basenrijk trilveen met ronde zegge

**KDW (kgN/ha/jr):** 16  
**SBZ is Essentieel gebied voor habitattype 7140: B Voldoende effectief maatregelenpakket**

#### Plaggen en chopperen

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** Het habitattype is hier gebonden aan verlandingsvegetaties bij oppervlaktewater. Plaggen of chopperen kan hier het actuele habitat vernielen.

**Opmerking:**

#### Maaien

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** Voor het behoud en herstel van dit habitattype blijkt uit praktijkservaring dat een jaarlijkse maaiapart essentieel is. Zonder deze verruigt het type snel.

**Opmerking:**

#### Opslag verwijderen

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**

#### Vrijzetten oevers

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**

#### Uitvenen

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** Het toepassen van deze maatregel zou hier de komende paar decennia leiden tot een vernieling van de bestaande habitatvlekken.

**Opmerking:**

#### Herstel waterhuishouding:

##### Structureel herstel op landschapschaal

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** Er zijn geen structurele knelpunten.

**Opmerking:**

#### Herstel waterhuishouding:

##### Herstel oppervlaktewaterkwaliteit

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** De kwaliteit van het oppervlaktewater is in deze deelzone (dalhoofd) sterk afhankelijk van de kwaliteit van het grondwater.

**Opmerking:**

#### Herstel waterhuishouding:

##### Herstel grondwaterkwaliteit

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** Niet alleen het direct effect van de toevoer van nutriënten is een belangrijk aandachtspunt, maar ook het indirect effect van de toevoer van sulfaten (kan aanleiding geven tot de vorming van toxische sulfiden en tot een versnelde veenafbraak).

**Opmerking:**

#### Herstel waterhuishouding:

##### Afbouw grote grondwateronttrekkingen

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.

**Opmerking:**

#### Herstel waterhuishouding:

##### Optimaliseren lokale drainage

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.

**Opmerking:**

#### Herstel waterhuishouding:

##### Optimaliseren lokale drainage

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** Op plaatsen waar het type actueel aanwezig is, is de lokale waterhuishouding reeds gunstig.
<table>
<thead>
<tr>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
</tr>
<tr>
<td>Motivering: Er is in deze deelzone geen structurele verdroging. De voedingsgebieden voor de aangemelde grondwaterafhankelijke habitattypen zijn relatief groot, wat de effectiviteit van deze maatregel verkleint.</td>
<td>Motivering: Aanleg van schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentieel open habitat.</td>
</tr>
</tbody>
</table>
Kalkhoudende moerassen met Cladium mariscus en soorten van het Caricion davallianae

**KDW (kgN/ha/jr)** 22

**Expertise: Terreinkennis**

Zeer belangrijk habitattype binnen SBZ

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Opslag verwijderen</th>
<th>Vrijzetten ocevers</th>
<th>Uitvenen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>0</td>
<td>1 of 3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** Het habitattype is hier gebonden aan verlandingsvegetaties bij oppervlaktewater. Plaggen of chopperen kan hier het habitat vernielen.

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Opslag verwijderen</th>
<th>Vrijzetten ocevers</th>
<th>Uitvenen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>0</td>
<td>1 of 3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** Dit habitattype is in deze deelzone in grote mate gebonden aan ondiepe wateren. Voor de soortenrijke variant kan maaien het dichtgroeien met andere helofyten (riet, lisdodde,...) verhinderen. Bij de structuurrijke variant daarentegen kan maaien de structuuropbouw verstoren.

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Motivering:** Het toepassen van deze maatregel zou hier de komende paar decennia leiden tot een vernieling van de bestaande habitatvlekken.

**Opmerking:**

**Herstel waterhuishouding:**
structureel herstel op landschapsschaal

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: structureel herstel</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: afbouw grote grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** Er zijn actueel geen structurele knelpunten.

**Motivering:** De kwaliteit van het oppervlaktewater is in deze deelzone (dalhoofd) sterk afhankelijk van de kwaliteit van het grondwater.

**Motivering:** Niet alleen het direct effect van de toevoer van nutriënten is een belangrijk aandachtspunt, maar ook het indirect effect

**Motivering:** Actueel zijn er in deze deelzone geen permanent grote grondwateronttrekkingen.

**Motivering:** Dit habitattype is actueel aanwezig als verlandingszone in twee vijvers. Het huidige peil hier laat hier herstel en verdere
van de toevoer van sulfaten (kan aanleiding geven tot de vorming van toxische sulfiden en tot een versnelde veenafbraak).

<table>
<thead>
<tr>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
</tr>
</thead>
</table>

**Herstel waterhuishouding: verhogen infiltratie neerslag**

<table>
<thead>
<tr>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
</tr>
</tbody>
</table>

Motivering: Er is in deze deelzone geen structurele verdroging. De voedingsgebieden voor de aangemelde grondwaterafhankelijke habitattypen zijn relatief groot, wat de effectiviteit van deze maatregel verkleint.

<table>
<thead>
<tr>
<th>Opmerking:</th>
</tr>
</thead>
</table>

Motivering: Aanleg van schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentieel open habitat.

<table>
<thead>
<tr>
<th>Opmerking:</th>
</tr>
</thead>
</table>
### 7230  Alkalisch laagveen

<table>
<thead>
<tr>
<th>KDW (kgN/ha/jr) 16</th>
<th>Expertise: Terreinkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essentieel habitattype binnen SBZ</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Opslag verwijderen</th>
<th>Vrijzetten oevers</th>
<th>Uitvenen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

- Plaggen en chopperen: Motivering: Voor het behoud en herstel van dit habitattype blijkt uit praktijkervaring dat een jaarlijkse maaibeurt essentieel is. Zonder deze verruigt het type snel.
- Maaien: Motivering: Dit type is hier minder gebonden aan oppervlaktewater.
- Opslag verwijderen: Motivering: Dit type is hier minder gebonden aan oppervlaktewater.
- Vrijzetten oevers: Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.
- Uitvenen: Motivering: Het toepassen van deze maatregel zou hier de komende paar decennia leiden tot een vernieling van de bestaande habitatvlekken.

Opmerking: De algemene herstelmaatregel en prioriteit wordt gevolgd.

### Herstel waterhuishouding:

<table>
<thead>
<tr>
<th>Herstel structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: afbouw grote grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Motivering: Op sommige plaatsen zijn structurele maatregelen nodig om te vermijden dat het kalkmoeras overstroomt met verontreinigd oppervlaktewater.

- Plaggen en chopperen: Motivering: De kwaliteit van het oppervlaktewater is in deze deelzone (dalhoofd) sterk afhankelijk van de kwaliteit van het grondwater.
- Maaien: Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.
- Opslag verwijderen: Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.
- Vrijzetten oevers: Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Opmerking: Het vermijden van overstromingen wordt hier gerekend tot de
<table>
<thead>
<tr>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Er is in deze deelzone geen structurele verdroging. De voedingsgebieden voor de aangemelde grondwaterafhankelijke habitattypen zijn relatief groot, wat de effectiviteit van deze maatregel verkleint.

Opmerking:

Motivering: Aanleg van scherbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentiële open habitat.

Opmerking:
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Ingrijpen struiklaag</th>
<th>Ingrijpen soorten boom- en struiklaag</th>
<th>Verminderde oogst houtige biomassa</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: De actuele percelen zijn reeds lichtrijk en sluiten goed aan bij open vegetaties. Echter het is te verwachten dat deze herstelmaatregel in vergelijking met de andere mogelijke herstelmaatregelen de grootste bijdrage tot herstel kan leveren.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: De bodem staat hier tijdelijk onder invloed van mineraal grondwater. Bij een oppervlakkige verzuring is hier geen afname van de biodiversiteit te verwachten.

Motivering: Er zijn geen structurele knelpunten.

Motivering: Kennislacune. Het is moeilijk te bepalen in welke mate de huidige grondwaterkwaliteit de ontwikkeling van het habitattype beïnvloedt.

Opmerking: Opmerking: Opmerking: Opmerking: Opmerking: Opmerking:

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>1</td>
<td>/</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Het lokale drainagesysteem is hier een belangrijke factor bij het beheer van de waterhuishouding.

Motivering: De actuele percelen zijn reeds vrij goed afgeschermd door hun ligging in een parkgebied. Uitbreiding van het scherm kan ten koste
<table>
<thead>
<tr>
<th>Opmerking:</th>
<th>Opmerking:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gaan van open habitattypen.</td>
<td></td>
</tr>
</tbody>
</table>
PRIORITERING MAATREGELEN PAS HERSTELBEHEER DEELZONE BE2400010-B

<table>
<thead>
<tr>
<th>3140</th>
<th>Kalkhoudende oligo-mesotrofe wateren met benthische Chara spp. vegetaties</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDW (kgN/ha/jr) 8</td>
<td>Expertise: Terreinkennis</td>
</tr>
<tr>
<td>Essentieel habitattype binnen SBZ</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Strooisel verwijderen</th>
<th>Opslag verwijderen</th>
<th>Baggeren</th>
<th>Vegetatie ruimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Motivering: Het habitatttype is actueel hier aanwezig in een ondiepe plas met veel helofyten. Door de helofyten en de oeverzone regelmatig te maaien ontvangt de waterbodem minder organisch materiaal en meer benodigd licht.

Opmerking: 

<table>
<thead>
<tr>
<th>Vrijzetten oevers</th>
<th>Manipulatie voedselketen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Motivering: Het actuele habitat ligt ingesloten in een type slechts voor in een

Motivering: Actueel komt het type slechts voor in een

Motivering: De algemene herstelmaatregel en prioriteit

Motivering: Kranswiervegetaties zijn hier

Motivering: De algemene herstelmaatregel en prioriteit
| bos. | ondiepe plas, waar vispopulaties ontbreken of zeer klein zijn. | wordt gevolgd. | in de eerste plaats gebonden aan grondwater. | wordt gevolgd. |
| Opmerking: | Opmerking: | Opmerking: | Opmerking: | Opmerking: |

<p>| Herstel waterhuishouding: afbouw grote grondwateronttrekkingen | Herstel waterhuishouding: optimaliseren lokale drainage | Herstel waterhuishouding: verhogen infiltratie neerslag | Herstel dynamiek wind | Tijdelijke drooglegging |
| Prioriteit algemeen | 2 | 2 | 2 | 2 |
| Prioriteit in deelzone | 3 | 3 | 3 | 2 |
| Opmerking: | Opmerking: | Opmerking: | Opmerking: | Opmerking: |</p>
<table>
<thead>
<tr>
<th>6230_hn</th>
<th>droog, heischraal grasland</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDW (kgN/ha/jr) 12</td>
<td>Expertise: Terreinkennis</td>
</tr>
<tr>
<td>SBZ is Kennislacune gebied voor habitattype 6230</td>
<td>A Onvoldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

### Plaggen en chopperen

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Maaien</th>
<th>Begrazen</th>
<th>Branden</th>
<th>Opslag verwijderen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**

### Maaien

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**

### Begrazen

**Motivering:** Bij het actuele habitatfragment, een smalle bermvegetatie, is begrazing geen beheeroptie.

**Opmerking:**

### Branden

**Motivering:** Bij het actuele habitatfragment, een smalle bermvegetatie, is branden geen beheeroptie.

**Opmerking:**

### Opslag verwijderen

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**

### Toevoegen basische stoffen

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**

**Motivering:** Aanleg van schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval en verhoogde bladval.

**Opmerking:**

**Opmerking:**
Laaggelegen schraal hooiland (Alopecurus pratensis, Sanguisorba officinalis)

<table>
<thead>
<tr>
<th>KDW (kgN/ha/jr) 20</th>
<th>Expertise: Terreinkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belangrijk habitattype binnen SBZ</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

**Maaien**
- Begrazen
- Opslag verwijderen
- Herstel waterhuishouding: structureel herstel op landschapsschaal
- Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

**Opmerking:**

**Herstel waterhuishouding:**
- Herstel grondwaterkwaliteit
- Herstel grondwateronttrekkingen
- Optimaliseren lokale drainage
- Verhogen infiltratie neerslag
- Aanleg van een scherm

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>/</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Motivering: De aanvoer van nitraten dient verlaagd of zo laag mogelijk gehouden te worden</td>
<td>Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen. Het type is ook niet grondwaterafhankelijk.</td>
<td>Motivering: Het optimaliseren van de lokale waterhuishouding zal hier naar verwachting weinig effectief zijn.</td>
</tr>
</tbody>
</table>

**Opmerking:**
### Habitattype: 6510_hu, glanshaverhooilanden (Arrhenaterion)

<table>
<thead>
<tr>
<th>KDW (kgN/ha/jr)</th>
<th>Expertise: Terreinkennis</th>
<th>SBZ is Belangrijk gebied voor habitattype 6510</th>
<th>B Voldoende effectief maatregelenpakket</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Maaien**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>/</td>
</tr>
</tbody>
</table>

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**

### Herstel waterhuishouding:

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** De aanvoer van nitraten dient verlaagd of zo laag mogelijk gehouden te worden.

**Opmerking:**

### Herstel waterhuishouding:

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** De aanvoer van nitraten dient verlaagd of zo laag mogelijk gehouden te worden.

**Opmerking:**

### Opmerking:

**Opmerking:**

**Opmerking:**

**Opmerking:**

**Opmerking:**

**Opmerking:**
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Ingrijpen structuur boom- en struiklaag</th>
<th>Ingrijpen soorten boom- en struiklaag</th>
<th>Verminderde oogst houtige biomassa</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

**Motivering:**
- De algemene herstelmaatregel en prioriteit wordt gevolgd.
- Motivering: De bosbetanden zijn in deze deelzone vooral te vinden op van nature mineraalrijke bodems. De basenvoorziening van deze bodems is hier actueel geen knelpunt, maar er dient over gewaakt dat de basenvoorraad niet uitgeput geraakt.
- Motivering: Het habitattype is hier nicht grondwaterafhankelijk.
- Motivering: Het habitattype staat hier niet in contact met het oppervlaktewater.

**Opmerking:**
Opmerking: De aanleg van groenschermen en geleidelijke externe bosranden kan de depositie van stikstof sterk verminderen. Op plaatsen waar het bos grenst aan open habitat en RBB is de aanleg van een scherm niet altijd gewenst.
<table>
<thead>
<tr>
<th>Sub-Atlantische en Midden-Europese wintereikenbossen of eiken-haagbeukbossen behorend tot het Carpinion-betulí</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDW (kgN/ha/jr) 20</td>
</tr>
<tr>
<td>Essentieel habitattype binnen SBZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toevoegen basische stoffen</th>
<th>Manipulatie voedselketen</th>
<th>Ingrijpen structuur boom- en struiklaag</th>
<th>Ingrijpen soorten boom- en struiklaag</th>
<th>Verminderde oogst houtige biomassa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2 of 3</td>
</tr>
</tbody>
</table>

Motivering: De mineralenbalans is voor deze bossen actueel geen knelpunt. Gezien de aanvoer via lokaal mineraalrijker grondwater (en de goede basenvoorziening van leem/kleibodem) is de noodzaak aan maatregelen hier op korte termijn minder groot.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: Vele van de bosbestanden verdonkeren hier tegenwoordig door het minder toepassen van het middelhoutbeheer. Kenmerkende plantensoorten zoals rapunzel en heerkruis worden nu nog vrijwel uitsluitend langs paden gevonden waar er meer licht en/of minder strooisel is.

Motivering: Op locaties met homogene dominantie van boom- en struiksoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbossen is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.

Motivering: De mineralenbalans is voor deze bossen actueel geen knelpunt. Gezien de aanvoer via lokaal mineraalrijker grondwater (en de goede basenvoorziening van leem/kleibodem) is de noodzaak aan maatregelen hier op korte termijn minder groot. Op locaties met dominantie van boom- en struiksoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag.'

Motivering: Op locaties met homogene dominantie van boom- en struiksoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag.'

Motivering: Op locaties met homogene dominantie van boom- en struiksoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag.'

Motivering: Op locaties met homogene dominantie van boom- en struiksoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag.'

Motivering: Op locaties met homogene dominantie van boom- en struiksoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag.'

Opmerking: Herstel waterhuishouding: structureel herstel op landschapsschaal

Opmerking: Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit

Opmerking: Herstel waterhuishouding: herstel grondwaterkwaliteit

Opmerking: Herstel waterhuishouding: afbouw grote grondwateronttrekkingen

Opmerking: Herstel waterhuishouding: optimaliseren lokale drainage
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

**Motivering:** Het habitattype is enkel afhankelijk van lokaal grondwater. Er zijn ook geen structurele knelpunten.

**Motivering:** Het habitattype staat hier niet in contact met het oppervlaktewater.

**Motivering:** De aanrijking van het grondwater is niet verminderd sinds begin 2000.

**Motivering:** Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.

**Motivering:** In een aantal percelen is lokale drainage aanwezig. Dit habitattype komt daar voor in combinatie met habitattype 91E0.

**Opmerking:** Herstel van de natuurlijke hydrologie kan zorgen voor een verschuiving van de vegetatietypen binnen het gebied.

**Opmerking:** Herstel waterhuishouding: verhogen infiltratie neerslag

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** De infiltratiegebieden voor dit habitattype liggen in de onmiddellijke omgeving en liggen grotendeels onder loofbos en landbouwgebruik. Deze gebieden zijn niet verhard of er zijn geen maatregelen genomen om water versneld af te voeren.

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:** De aanleg van groenschermen en geleidelijke externe
borsranden kan de depositie van stikstof sterk verminderen. Op plaatsen waar het bos grenst aan open habitat en RBB is de aanleg van een scherm niet altijd wenselijk.
### Expertise: Terreinkennis

<table>
<thead>
<tr>
<th>SBZ is Zeer belangrijk gebied voor habitattype 91E0</th>
<th>B Voldoende effectief maatregelenpakket</th>
</tr>
</thead>
</table>

**Ingrijpen structuur boom- en struiklaag**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: Vele van de bosbestanden verdonkeren hier tegenwoordig door het minder toepassen van het hakkout/middelhoutbeheer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.</td>
</tr>
</tbody>
</table>

**Ingrijpen soorten boom- en struiklaag**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.</td>
</tr>
</tbody>
</table>

**Verminderde oogst houtige biomassa**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.</td>
</tr>
</tbody>
</table>

**Herstel waterhuishouding: structureel herstel op landschapsschaal**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.</td>
</tr>
</tbody>
</table>

**Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: De percelen staan in direct contact met een oppervlaktewater dat sterk verontreinigd is met zouten.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.</td>
</tr>
</tbody>
</table>

**Herstel waterhuishouding: herstel grondwaterkwaliteit**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Opmerking: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.</td>
</tr>
</tbody>
</table>

**Herstel waterhuishouding: herstel grondwateronttrekkingen**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: In deze percelen is lokale drainage aanwezig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Opmerking: Kennislacune: De infiltratiegebieden voor dit habitattype liggen mogelijk deels onder verharding (bewoning en nationale luchthaven).</td>
</tr>
</tbody>
</table>

**Herstel waterhuishouding: optimaliseren lokale drainage**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Opmerking: In deze percelen is lokale drainage aanwezig.</td>
</tr>
</tbody>
</table>

**Herstel waterhuishouding: verhogen infiltratie neerslag**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Opmerking: In deze percelen is lokale drainage aanwezig.</td>
</tr>
</tbody>
</table>

**Aanleg van een scherm**

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Opmerking: In deze percelen is lokale drainage aanwezig.</td>
</tr>
</tbody>
</table>

**Motivering: Actueel zijn er in (de omgeving van) deze deelzone geen permanent grote grondwateronttrekkingen.**

**Motivering: In deze percelen is lokale drainage aanwezig.**

**Motivering: Kennislacune: De infiltratiegebieden voor dit habitattype liggen mogelijk deels onder verharding (bewoning en nationale luchthaven).**

**Motivering: Deze maatregel is belangrijk om de invloed van de autosnelweg te temperen.**
Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.

| Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding. |
|-----------------------------|-----------------------------|
| Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding. |
| Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding. |
| Opmerking: De aanleg van groenschermen en geleidelijke externe bosranden kan de depositie van stikstof sterk verminderen. Deze beoordeling slaat enkel op de percelen met een overschrijding. |
ruigt-elzenbos (Filipendulo-Alnetum, Macrophorbio-Alnetum, Cirsio-Alnetum)

<table>
<thead>
<tr>
<th>KDW (kgN/ha/jr)</th>
<th>Expertise: Terreinkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

SBZ is Zeer belangrijk gebied voor habitattype 91E0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Motivering: In deze percelen is lokale drainage aanwezig.

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: In deze percelen is lokale drainage aanwezig.</th>
<th>Motivering: Kennislacune: De infiltratiegebieden voor dit habitattype liggen mogelijk deels onder verharding (bewoning en nationale luchthaven).</th>
<th>Motivering: Deze maatregel is belangrijk om de invloed van de autosnelweg te temperen.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 or 3</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.

Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding.
| Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding. | Opmerking: Deze beoordeling slaat enkel op de percelen met een overschrijding. | Opmerking: De aanleg van groenschermen en geleidelijke externe bosranden kan de depositie van stikstof sterk verminderen. Deze beoordeling slaat enkel op de percelen met een overschrijding. |
PRIORITERING MAATREGELEN PAS HERSTELBEHEER DEELZONE BE2400010-C

<table>
<thead>
<tr>
<th>3140</th>
<th>Kalkhoudende oligo-mesotrofe wateren met benthische Chara spp. vegetaties</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDW (kgN/ha/jr) 8</td>
<td>Expertise: Terreinkennis</td>
</tr>
<tr>
<td>Essentieel habitattype binnen SBZ</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Strooisel verwijderen</th>
<th>Opslag verwijderen</th>
<th>Baggeren</th>
<th>Vegetatie ruimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Motivering: Het habitattype is actueel hier vooral aanwezig in ondiepe greppels met veel helofyten. Deze plaatsen worden bij voorkeur jaarlijks gemaaid.

Opmerking:

<table>
<thead>
<tr>
<th>Vrijzetten oevers</th>
<th>Manipulatie voedselketen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Motivering: De habitatlocatie zijn vaak ingesloten in bos.

Opmerking:

<table>
<thead>
<tr>
<th>Vrijzetten oevers</th>
<th>Manipulatie voedselketen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Opmerking:
<table>
<thead>
<tr>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ontbreken of zeer klein zijn.</td>
<td>aan grondwater.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herstel waterhuishouding:</th>
<th>Herstel waterhuishouding:</th>
<th>Herstel waterhuishouding:</th>
<th>Herstel dynamiek wind</th>
<th>Tijdelijke drooglegging</th>
</tr>
</thead>
<tbody>
<tr>
<td>afbouw grote grondwateronttrekkingen</td>
<td>optimaliseren lokale drainage</td>
<td>verhogen infiltratie neerslag</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>1 of 3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Actueel is hier geen permanente grote grondwateronttrekking.
Motivering: Actueel komt het type vooral voor in greppels. Draineren deze greppels momenteel de omgeving sterk dan is afdammen eerder dan dempen een geschikte maatregel. Dragen de greppels actueel vooral bij tot afvoer van overtollig neerslagwater, dan is afdammen/dempen geen geschikte maatregel.

Motivering: De voedingsgebieden voor de aangemelde grondwaterafhankelijke habitattypen zijn relatief groot, wat de effectiviteit van deze maatregel verkleint.

Motivering: Windwerking speelt hier geen factor van betekenis.

Motivering: Kranswiervegetaties komen actueel maar voor in (zeer) kleine waterpartijen, die men niet gravitair kan laten leeglopen.

Opmerking: | Opmerking: | Opmerking: | Opmerking: | Opmerking: |
**6230 ha** soortenrijke graslanden van het struisgrasverbond

KDW (kgN/ha/jr) 12

Expertise: Terreinkennis

SBZ is Kennislacune gebied voor habitattype 6230

A Onvoldoende effectief maatregelenpakket

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Begrazen</th>
<th>Branden</th>
<th>Opslag verwijderen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>


Opmerking: Opmerking: Opmerking: Opmerking:

<table>
<thead>
<tr>
<th>Toevoegen basische stoffen</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd. Motivering: Het perceel is actueel reeds goed door bos omgeven.

Opmerking: Opmerking:
<table>
<thead>
<tr>
<th>Habitattype</th>
<th>Habitattype</th>
<th>KDW (kgN/ha/jr)</th>
<th>Expertise:</th>
<th>SBZ is Kennislacune gebied voor habitattype 6230</th>
</tr>
</thead>
<tbody>
<tr>
<td>6230_hn droog, heischraal grasland</td>
<td>12</td>
<td></td>
<td>Terreinkennis</td>
<td></td>
</tr>
</tbody>
</table>

**Prioriteit algemeen**

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Begrazen</th>
<th>Branden</th>
<th>Opslag verwijderen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

**Prioriteit in deelzone**

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Begrazen</th>
<th>Branden</th>
<th>Opslag verwijderen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:**
- Chopperen kan kleinschalig ingezet worden om bepaalde vervilte delen te herstellen.
- De algemene herstelmaatregel en prioriteit wordt gevolgd.
- Het huidige perceel is te klein en ligt te geïsoleerd om begraasd te kunnen worden.
- Het perceel is actueel reeds goed door bos omgeven.
- De nabijheid van woningen maakt branden onmogelijk.
- Opslag is actueel hier geen knelpunt.

**Opmerking:**

**Toevoegen basische stoffen**

<table>
<thead>
<tr>
<th>Aanleg van een scherm</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

**Motivering:**
- De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Opmerking:**
**6410_mo** | blauwgrasland
---|---
KDW (kgN/ha/jr) 15 | Expertise: Terreinkennis
SBZ is Essentieel gebied voor habitattype 6410 | B Voldoende effectief maatregelennpakket

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Toevoegen basische stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Actueel is de strooiselopbouw geen knelpunt. De opbouw van een organische bodem kan bij dit type ook gewenst zijn.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: Actueel is dit geen knelpunt, maar bij (tijdelijk) staken van beheer kunnen er zich wel snel struiken en bomen opslaan.

Motivering: Basen worden hier aangevoerd via het grondwater. Lokale ontkalking kan de milieuvariatie vergroten.

Opmerking:

<table>
<thead>
<tr>
<th>Herstel waterhuishouding:</th>
<th>Herstel waterhuishouding:</th>
<th>Herstel waterhuishouding:</th>
<th>Herstel waterhuishouding:</th>
<th>Herstel waterhuishouding:</th>
</tr>
</thead>
<tbody>
<tr>
<td>structureel herstel op landschappschaal</td>
<td>herstel oppervlaktewaterkwaliteit</td>
<td>herstel grondwaterkwaliteit</td>
<td>afbouw grote grondwateronttrekkingen</td>
<td>optimaliseren lokale drainage</td>
</tr>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Actueel stellen zich geen structurele knelpunten.

Motivering: Actueel is de invloed van het oppervlaktewater op het habitattype gering.

Motivering: Het grondwater is in de onmiddellijke omgeving aangerijkt met nitraat en sulfaten.

Motivering: Actueel zijn er in de omgeving geen permanente grote grondwateronttrekkingen.

Motivering: Het drainagegestel ondervindt nog de nadelen van een vrij recente verdieping tbv de populierenteelt.

Opmerking:

<table>
<thead>
<tr>
<th>Herstel waterhuishouding:</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>verhogen infiltratie neerslag</td>
<td></td>
</tr>
</tbody>
</table>

Opmerking:
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>/</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering:
Het voedingsgebied is vermoedelijk vrij groot. De bijdrage van deze maatregel is in dat geval dan relatief klein.

Motivering:
Actueel is het perceel reeds door een scherm omgeven.

Opmerking:

Opmerking:
Laaggelegen schraal hooiland (Alopecurus pratensis, Sanguisorba officinalis)

<table>
<thead>
<tr>
<th>KDW (kgN/ha/jr)</th>
<th>Expertise: Terreinkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Actueel wordt het type weinig door grondwater beïnvloed.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Actueel is het type weinig door grondwater beïnvloed.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>3</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Actueel is de houtopslag een vrij belangrijke bron van verstoring.

Motivering: Het type is niet grondwaterafhankelijk. De invloed van oppervlaktewater is actueel heel gering.

Motivering: Het type is niet grondwaterafhankelijk. De invloed van oppervlaktewater is actueel heel gering.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: Het type is niet grondwaterafhankelijk. De invloed van oppervlaktewater is actueel heel gering.

Motivering: Het type is niet grondwaterafhankelijk. De invloed van oppervlaktewater is actueel heel gering.

Motivering: Het type is niet grondwaterafhankelijk. De invloed van oppervlaktewater is actueel heel gering.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.
<table>
<thead>
<tr>
<th>6510_hu</th>
<th>glanshaverhooielanden (Arrhenaterion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDW (kgN/ha/jr) 20</td>
<td>Expertise: Terreinkennis</td>
</tr>
<tr>
<td>SBZ is Belangrijk gebied voor habitattype 6510</td>
<td>B Voldoende effectief maatregelenpaket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: Actueel is de houtopslag een vrij belangrijke bron van verstoring.

Motivering: Het type is niet grondwaterafhankelijk. De invloed van oppervlaktewater is actueel heel gering.

Opmerking:

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: afbouw grote grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Actueel wordt het type weinig door grondwater beïnvloed.

Motivering: Er zijn actueel geen permanente grote grondwateronttrekkingen.

Motivering: Actueel is dit geen knelpunt.

Motivering: Het type is niet grondwaterafhankelijk.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Opmerking:
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Ingrijpen structuur boom- en struiklaag</th>
<th>Ingrijpen soorten boom- en struiklaag</th>
<th>Verminderde oogst houtige biomassa</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.**

Motivering: De soortensamenstelling stemt meestal overeen met deze van een natuurlijk bos.

Motivering: De bosbetanden zijn in deze deelzone vooral te vinden op van nature mineraalrijke bodems. De basenvoorziening van deze bodems is hier actueel geen knelpunt, maar er dient over gewaakt dat de basenvoorraad niet uitgeput geraakt.

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Opmerking:**

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Motivering:** Hier komen geen grondwatergebonden typen voor. Ook liggen de percelen buiten de invloedssfeer van oppervlaktewater.

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Motivering:** De soortensamenstelling stemt meestal overeen met deze van een natuurlijk bos.

Motivering: De bosbetanden zijn in deze deelzone vooral te vinden op van nature mineraalrijke bodems. De basenvoorziening van deze bodems is hier actueel geen knelpunt, maar er dient over gewaakt dat de basenvoorraad niet uitgeput geraakt.

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Opmerking:**

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Motivering:** De soortensamenstelling stemt meestal overeen met deze van een natuurlijk bos.

Motivering: De bosbetanden zijn in deze deelzone vooral te vinden op van nature mineraalrijke bodems. De basenvoorziening van deze bodems is hier actueel geen knelpunt, maar er dient over gewaakt dat de basenvoorraad niet uitgeput geraakt.

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Opmerking:**

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Motivering:** De soortensamenstelling stemt meestal overeen met deze van een natuurlijk bos.

Motivering: De bosbetanden zijn in deze deelzone vooral te vinden op van nature mineraalrijke bodems. De basenvoorziening van deze bodems is hier actueel geen knelpunt, maar er dient over gewaakt dat de basenvoorraad niet uitgeput geraakt.

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Opmerking:**

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Motivering:** De soortensamenstelling stemt meestal overeen met deze van een natuurlijk bos.

Motivering: De bosbetanden zijn in deze deelzone vooral te vinden op van nature mineraalrijke bodems. De basenvoorziening van deze bodems is hier actueel geen knelpunt, maar er dient over gewaakt dat de basenvoorraad niet uitgeput geraakt.

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.

**Opmerking:**

Motivering: De percelen liggen buiten de invloedssfeer van oppervlaktewater.
<table>
<thead>
<tr>
<th>bosbestanden komen waarschijnlijk niet veel in contact met aangevoerd grondwater.</th>
<th>grondwatergebonden typen voor.</th>
<th>geen grondwatergebonden typen voor.</th>
<th>grondwatergebonden typen voor.</th>
<th>habitatttype ingebed ligt in het bos is het aanleggen van een scherm niet relevant; waar dit type grenst aan open terrein (uitgezonderd habitatwaardige vegetaties of rbb) en transportinfrastructuur is dit een prioritaire maatregel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
</tr>
<tr>
<td>Toevoegen basische stoffen</td>
<td>Manipulatie voedselketen</td>
<td>Ingrijpen structuur boom- en struiklaag</td>
<td>Ingrijpen soorten boom- en struiklaag</td>
<td>Verminderde oogst houtige biomassa</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
<td>----------------------------------------</td>
<td>---------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Prioriteit algemeen</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>1 of 3</td>
<td>2</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: Sommige van de aanwezige bosbestanden van dit habitattype zijn nu meestal reeds structuurrijk, met oude eiken en een gevarieerde onderetage. Hier zijn grote ingrepen in bestandsstructuur niet wenselijk en ook niet effectief. Er zijn bestanden die verdonkeren door het minder toepassen van het middelhoutbeheer. Hier is deze herstelmaatregel prioritair.

Motivering: Op locaties met homogene dominante boom- en struiksoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.

Motivering: De mineralenbalans is voor deze bossen actueel geen knelpunt. Gezien de aanvoer via lokaal mineraalrijker groundwater (en de goede basenvoorziening van leem/kleibodems) is de noodzaak aan maatregelen hier op korte termijn minder groot. Op locaties met dominantie van boom- en struiksoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag.'

Opmerking:                      

Herstel waterhuishouding:      

Herstel waterhuishouding:      

Herstel waterhuishouding:      

Herstel waterhuishouding:
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: Er zijn actueel geen structurele knelpunten.</th>
<th>Motivering: De bosbestanden liggen actueel niet in overstromingsgevoelige zones.</th>
<th>Motivering: Het type kan in contact staan met lokaal grondwater dat aangerikt is met nitraten.</th>
<th>Motivering: Er zijn actueel geen permanente grote grondwaterwinningen.</th>
<th>Motivering: In een aantal percelen is lokale drainage aanwezig. Dit habitattype komt daar voor in combinatie met habitattype 91E0.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>Prioriteit in deelzone</td>
<td>Motivering: Er zijn actueel geen structurele knelpunten.</td>
<td>Motivering: De bosbestanden liggen actueel niet in overstromingsgevoelige zones.</td>
<td>Motivering: Het type kan in contact staan met lokaal grondwater dat aangerikt is met nitraten.</td>
<td>Motivering: In een aantal percelen is lokale drainage aanwezig. Dit habitattype komt daar voor in combinatie met habitattype 91E0.</td>
</tr>
<tr>
<td><strong>Opmerking:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herstel waterhuishouding: verhogen infiltratie neerslag</td>
<td>Aanleg van een scherm</td>
<td>Motivering: Actueel zijn de percelen niet structureel verdroogd.</td>
<td>Motivering: Waar dit habitattype ingebed ligt in het bos is het aanleggen van een scherm niet relevant; waar dit type grenst aan open terrein (uitgezonderd habitatwaardige vegetaties of rbb) en transportinfrastructuur is dit</td>
<td>Motivering: Actueel zijn de percelen niet structureel verdroogd.</td>
<td>Motivering: Waar dit habitattype ingebed ligt in het bos is het aanleggen van een scherm niet relevant; waar dit type grenst aan open terrein (uitgezonderd habitatwaardige vegetaties of rbb) en transportinfrastructuur is dit</td>
<td>Motivering: Actueel zijn de percelen niet structureel verdroogd.</td>
</tr>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>een prioritaire maatregel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**91E0_vn** ruigt-elzenbos (Filipendulo-Alnetum, Macrophorbio-Alnetum, Cirsio-Alnetum)

<table>
<thead>
<tr>
<th>KDW (kgN/ha/jr) 26</th>
<th>Expertise: Terreinkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBZ is Zeer belangrijk gebied voor habitattype 91E0</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verminderde oogst houtige biomassa</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: afbouw grote grondwateronttrekkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>2</td>
<td>2 of 3</td>
</tr>
<tr>
<td>Motivering: In deze percelen is lokale drainage aanwezig.</td>
<td>Motivering: Kennislacune: De infiltratiegebieden voor dit habitattype liggen mogelijk deels onder verharding.</td>
<td>Motivering: Waar dit habitattype ingebouw ligt in het bos is het aanleggen van een scherm niet relevant; waar dit type grenst aan open terrein (uitgezonderd habitatwaardige vegetaties of rbb) en transportinfrastructuur is dit een prioritaire maatregel.</td>
</tr>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
</tr>
</tbody>
</table>
### PRIORITERING MAATREGELEN PAS HERSTELBEHEER DEELZONE BE2400010-D

<table>
<thead>
<tr>
<th>6410_mo</th>
<th>blauwgrasland</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDW (kgN/ha/jr)</td>
<td>15</td>
</tr>
<tr>
<td>SBZ is Essentieel gebied voor habitattype 6410</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plaggen en chopperen</th>
<th>Maaien</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Toevoegen basische stoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** Actueel is de strooiselopbouw geen knelpunt. De opbouw van een organische bodem kan bij dit type ook gewenst zijn.

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Motivering:** De algemene herstelmaatregel en prioriteit wordt gevolgd.

**Motivering:** De actuele habitatvlekken zijn nauwelijks verstoord door opslag, waardoor deze herstelmaatregel hier nu weinig relevant is. Dit type is wel sterk geliefd onder de pioniersbomen (berk, wilg en zwarte els), waardoor het staken van maaien snel leidt tot opslag.

**Motivering:** Dit habitattype is voor zijn bufferings hier aangewezen op de aanvoer van mineraalrijk grondwater. Het toevoegen van basische stoffen kan hier zelfs leiden tot een verlies van kwaliteit omdat het juist een natuurlijke zuurgradient verbonden aan het microrelief (rabattenstructuur) kan verstoren.

<table>
<thead>
<tr>
<th>Opmerking:</th>
<th>Opmerking:</th>
<th>Opmerking:</th>
</tr>
</thead>
</table>

<p>| Herstel waterhuishouding: structureel herstel op landschapsschaal | Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit | Herstel waterhuishouding: herstel grondwaterkwaliteit | Herstel waterhuishouding: afbouw grote grondwateronttrekkingen | Herstel waterhuishouding: optimaliseren lokale drainage |</p>
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1 of 2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

**Motivering:** Actueel zijn er geen knelpunten m.b.t. de waterhuishouding die slaan op de geomorfologische opbouw of de samenhang van waterafhankelijke ecosystemen.

**Motivering:** Actueel komen de percelen vrijwel niet in contact met oppervlaktewater.

**Motivering:** De percelen worden actueel gevoed met nutriënten (nitraat en fosfaat) en sulfaten aangerijkt grondwater.

**Motivering:** Kennislacune. Er is in het gebied een drinkwaterwinning actief. De reikwijdte van de winning op vlak van grondwaterstanden is momenteel nog in onderzoek.

**Motivering:** In de percelen is er een lokaal drainagesysteem aanwezig. Het type is zowel gevoelig voor wijzigingen die de drainage bevorderen (door de verminderde invloed van mineraalrijk grondwater) als afremmen (door het wegdrukken van mineraalrijk grondwater met regenwater of door de aëratie te beperken).

**Opmerking:**

**Herstel waterhuishouding:**

**verhogen infiltratie neerslag**

<table>
<thead>
<tr>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering:** De voedingsgebieden voor de aangemelde grondwaterafhankelijke habitattypen zijn relatief groot, wat de effectiviteit van deze maatregel verkleint.

**Motivering:** Aanleg van schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentieel open habitat.
Laaggelegen schraal hooiland (Alopecurus pratensis, Sanguisorba officinalis)

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd. Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd. Motivering: De actuele habitatvlakken zijn nauwelijks verstoord door opslag, waardoor deze herstelmaatregel hier nauwelijks relevant is. Dit type is wel sterk geliefd onder de pioniersbomen (berk, wilg en zwarte els), waardoor het staken van maaien snel leidt tot opslag. Motivering: Het type is niet grondwaterafhankelijk. Motivering: Actueel komen de percelen vrijwel niet in contact met oppervlaktewater.

Opmerking: Opmerking: Opmerking: Opmerking: Opmerking:
worden actueel gevoed met nutriënten (nitraat en fosfaat) en sulfaten aangerijkt grondwater.

<table>
<thead>
<tr>
<th>grondwaterafhankelijk</th>
<th>niet grondwaterafhankelijk</th>
<th>grondwaterafhankelijk</th>
<th>schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentiële open habitat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
<td>Opmerking:</td>
</tr>
</tbody>
</table>
### 6510_hu glanshaverhooidlenen (Arrhenaterion)

<table>
<thead>
<tr>
<th>KDW (kgN/ha/jr) 20</th>
<th>Expertise: Terreinkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBZ is Belangrijk gebied voor habitattype 6510</td>
<td>B Voldoende effectief maatregelenpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maaien</th>
<th>Begrazen</th>
<th>Opslag verwijderen</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>/</td>
</tr>
</tbody>
</table>

**Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.**
- Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.
- Motivering: De actuele habitatvlakken zijn nauwelijks verstoord door opslag, waardoor deze herstelmaatregel hier nu weinig relevant is. Dit type is wel sterk geliefd onder de pioniersbomen (berk, wilg en zwarte els), waardoor het staken van maaien snel leidt tot opslag.
- Motivering: Het is type is niet grondwaterafhankelijk.
- Motivering: Actueel komen de percelen vrijwel niet in contact met oppervlaktewater.

**Opmerking:**
- Opmerking: Herstel waterhuishouding: herstel grondwaterkwaliteit
- Opmerking: Aanleg van een scherm

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: herstel grondwaterkwaliteit</th>
<th>Herstel waterhuishouding: afbouw grote grondwateronttrekkingen</th>
<th>Herstel waterhuishouding: optimaliseren lokale drainage</th>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Motivering: De percelen**
- Motivering: Het is type is niet
- Motivering: Het is type is
- Motivering: Het is type is
- Motivering: Aanleg van
worden actueel gevoed met nutriënten (nitraat en fosfaat) en sulfaten aangerijkt grondwater.

<table>
<thead>
<tr>
<th>grondwaterafhankelijk.</th>
<th>niet grondwaterafhankelijk.</th>
<th>grondwaterafhankelijk.</th>
<th>schermbos kan nuttig zijn, maar deze maatregel dient afgewogen te worden met het risico op verminderde lichtinval, verhoogde bladval en de inname van potentieel open habitat.</th>
</tr>
</thead>
</table>

Opmerking:                     Opmerking:                     Opmerking:                     Opmerking:                     Opmerking:
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Ingrijpen structuur boom- en struiklaag</th>
<th>Ingrijpen soorten boom- en struiklaag</th>
<th>Verminderde oogst houtige biomassa</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: De bosbetanden zijn in deze deelzone vooral te vinden op van nature mineraalrijke bodems. De basenvoorziening van deze bodems is hier actueel geen knelpunt, maar er dient over gewaakt dat de basenvoorraad niet uitgeput geraakt.

Motivering: Het habitattype is hier niet grondwaterafhankelijk.

Motivering: Het bosbestand staat niet in contact met oppervlaktewater.

Opmerking: De algemene herstelmaatregel en prioriteit wordt gevolgd.

Motivering: Het habitattype is hier niet grondwaterafhankelijk.

Motivering: Het bosbestand staat niet in contact met oppervlaktewater.

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Ingrijpen structuur boom- en struiklaag</th>
<th>Ingrijpen soorten boom- en struiklaag</th>
<th>Verminderde oogst houtige biomassa</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Kennislacune.

Motivering: Het habitattype is

Motivering: Het bosbestand

Motivering: Het habitattype is

Motivering: De algemene

Herstel waterhuishouding: herstel grondwaterkwaliteit

Herstel waterhuishouding: afbouw grote grondwateronttrekkingen

Herstel waterhuishouding: optimaliseren lokale drainage

Herstel waterhuishouding: verhogen infiltratie neerslag

Aanleg van een scherm

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Ingrijpen structuur boom- en struiklaag</th>
<th>Ingrijpen soorten boom- en struiklaag</th>
<th>Verminderde oogst houtige biomassa</th>
<th>Herstel waterhuishouding: structureel herstel op landschapsschaal</th>
<th>Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Motivering: Kennislacune.

Motivering: Het habitattype is

Motivering: Het bosbestand

Motivering: Het habitattype is

Motivering: De algemene
Het bosbestand komt waarschijnlijk niet veel in contact met aangevoerd grondwater. Hier niet grondwaterafhankelijk.

Heeft een rabattenstructuur. Met het beheer van dit systeem kan eventueel stagnerend regenwater worden afgevoerd. Hier niet grondwaterafhankelijk.

Herstelmaatregel en prioriteit wordt gevolgd.

<p>| Opmerking: | Opmerking: | Opmerking: | Opmerking: | Opmerking: |</p>
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.</th>
<th>Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.</th>
<th>Motivering: Sommige van de aanwezige bosbestanden van dit habitattype zijn nu meestal reeds structuurrijk, met oude eiken en een gevarieerde onderetage. Hier zijn grote ingrepen in bestandsstructuur niet wenselijk en ook niet effectief. Er zijn bestanden die verdonkeren door het minder toepassen van het middelloutbeheer. Hier is deze herstelmaatregel prioritair.</th>
<th>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</th>
<th>Motivering: De mineralenbalans is voor deze bossen actueel geen knelpunt. Gezien de aanvoer via lokaal mineraalrijker grondwater (en de goede basenvoorziening van leem/kleibodems) is de noodzaak aan maatregelen hier op korte termijn minder groot. Op locaties met dominantie van boom- en struikoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</td>
<td>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</td>
<td>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</td>
<td>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</td>
<td>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</td>
<td>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</td>
<td>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>Prioriteit in deelzone</th>
<th>Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.</th>
<th>Motivering: De algemene herstelmaatregel en prioriteit wordt gevolgd.</th>
<th>Motivering: Sommige van de aanwezige bosbestanden van dit habitattype zijn nu meestal reeds structuurrijk, met oude eiken en een gevarieerde onderetage. Hier zijn grote ingrepen in bestandsstructuur niet wenselijk en ook niet effectief. Er zijn bestanden die verdonkeren door het minder toepassen van het middelhoutbeheer. Hier is deze herstelmaatregel prioritair.</th>
<th>Motivering: Op locaties met homogene dominantie van boom- en struikoorten met verzurend effect heeft deze maatregel belangrijk. Bij (oude) inheemse eikenbestanden is een geleidelijke ingreep over een langere periode aangewezen. In bestanden met een goede soortensamenstelling én structuur is deze maatregel niet van toepassing.</th>
<th>Motivering: De mineralenbalans is voor deze bossen actueel geen knelpunt. Gezien de aanvoer via lokaal mineraalrijker grondwater (en de goede basenvoorziening van leem/kleibodems) is de noodzaak aan maatregelen hier op korte termijn minder groot. Op locaties met dominantie van boom- en struikoorten met verzurend effect, kan eerst ingezet worden op de maatregel 'Ingrijpen soorten boom- en struiklaag'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1 of 3</td>
<td>2 of 3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

**Herstel waterhuishouding: structureel herstel op landschapsschaal**

**Herstel waterhuishouding: herstel oppervlaktewaterkwaliteit**

**Herstel waterhuishouding: herstel grondwaterkwaliteit**

**Herstel waterhuishouding: afbouw grote grondwateronttrekkingen**

**Herstel waterhuishouding: optimaliseren lokale drainage**
<table>
<thead>
<tr>
<th>Prioriteit algemeen</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1 of 2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Motivering: Actueel zijn er geen structurele knelpunten.</td>
<td>Motivering: De bosbestanden staan niet in direct contact met oppervlaktwater.</td>
<td>Motivering: Waar het grondwater aangerukt is met nitraten, is dit een prioritaire maatregel.</td>
<td>Motivering: Kennislacune. Het is nog onduidelijk wat de impact is van de drinkwaterwinning. Momenteel loopt hiernaar een onderzoek. Voor locaties waar de winning aanleiding geeft tot een daling van de grondwaterstanden, vooral in het winterhalfjaar, is dit een prioritaire maatregel.</td>
<td>Motivering: In de meeste percelen is lokale drainage aanwezig.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herstel waterhuishouding: verhogen infiltratie neerslag</th>
<th>Aanleg van een scherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioriteit algemeen</td>
<td>/</td>
</tr>
<tr>
<td>Prioriteit in deelzone</td>
<td>3</td>
</tr>
<tr>
<td>Motivering: Actueel zijn er weinig vormen van landgebruik aanwezig (zoals naaldhout) die duidelijk meer water verbruiken.</td>
<td>Motivering: Waar dit habitattype ingebed ligt in het bos is het aanleggen van een scherm niet relevant; waar dit type grenst aan open terrein</td>
</tr>
</tbody>
</table>
(uitgezonderd habitatwaardige vegetaties of rbb) en transportinfrastructuur is dit een prioritaire maatregel.