n2kanalysis: a framework for automated and reproducible statistics from long-term ecological monitoring

Thierry Onkelinx

Case study long-term monitoring

- Natura 2000 (n2k) is a network of core sites
 - breeding and resting sites for rare and threatened species
 - some rare natural habitat types
- ► 18% of EU's land territory and 6% of its marine territory
- member states must report every 6 year on status and trend over the last 24 year
- goal of n2kanalysis: generate automated reproducible and traceable statistics

Reproducible research

benefits

- repeating the analysis
 - on same data yields the same results
 - on *new* data yields *comparable* results
- allows for inspection
 - what is analysed and how
 - useful when doubts arise with third parties

† downsides

- a bit harder to manage
- requires more storage
- stands or falls on version control
 - code
 - data
 - software environment

Traceable research

- retrace any parameter estimate to a specific analysis
 - including data, metadata and environment
- solution: add file & status fingerprints when communicating results
 - fingerprint: SHA1 hashes
 - file fingerprint: based on components which should never change in a specific analysis
 - stable metadata (model type, species group, location group, ...)
 - input data
 - doubles as file name for the analysis object
 - status fingerprint: based on file fingerprint + changing components
 - metadata (status, used software, ...)
 - fitted model

Schematic data flow

Data under version control

- ▶ analysis data
 - private git repo
 - even relative large monitoring schemes are doable
 - ▶ 100 species, 1200 sites, 27 years, 6 month
 - stable ordering of rows and columns is required
- ► Results
 - PostgreSQL database
 - only append data
 - https://github.com/inbo/n2kresult

Environment under version control

- analyses run on virtual machine with Docker
- Docker image contains a fixed version of all required dependencies
- multiple versions of Docker image
 - keep old versions for older analyses
 - create new version when more recent software is required

Analysis object as cornerstone

- S4 object n2kModel
- metadata
 - model type
 - species group
 - location groupimport date
 - time range
 - seed
 - file & status fingerprint
 - used software + version
- input for analysis
 - data.frame
 - parent analysis when analysis depends on output of other analysis
- fitted model

Anomalies?

- extreme values according to the model
 - high (low) fitted values while low (high) observed values
 - extreme hyper parameters (e.g. random intercept with large σ)
 - unstable imputations in case the analysis is based on multiple imputation
- might be due to
 - typo in data
 - correct but strange observation
 - wrong model
- ▶ inspect only $n = 10, 20, \dots$ extreme values
 - tackle the most influential errors first
 - redo the analysis after fixing problems in the data

Pro tip: use nominal validation status

- unchecked: default status for all records
- updated: records which have been altered
- good: scrutinized records which are correct and suitable for the original goal
- abnormal: scrutinized records which are correct but not suitable for the original goal
- rejected: scrutinized records which cannot be trusted
- anomaly: records which have not been scrutinized and flagged by an analysis as anomaly

Custom R packages under version control. Available at https://github.com/inbo

n2kanalysis

- generic package, used for every monitoring
- defines S4 classes + validation
- fits the analysis objects
- extracts model parameters and anomalies

'xyz'analysis

- 'xyz' stands for a specific monitoring scheme
- each monitoring scheme has its own package

defines how the analysis objects are created

defines import of raw data and metadata

auxiliary packages

- n2khelper contains generic auxiliary functions
- n2kupdate: export from R to database

