Design and implementation of a monitoring scheme to assess habitat quality of European protected habitats in Flanders (Belgium)

ISEC 2018, St-Andrews
Toon Westra, Thierry Onkelinx & Patrik Oosterlynck
Nature and Forest Research Institute (INBO)
Introduction
Introduction

- European **Habitat Directive** and **Bird directive**
 - Maintain and restore protected habitats and species
 - Network of protected sites = Natura 2000 – network
 - List of protected habitats ≈ Natura 2000 – habitats
Introduction
Introduction

- 4.8% of Flanders is covered by Natura 2000 habitat (66000 hectares)
- 47 habitat types
Introduction

- 12.3% of Flanders is covered by Natura 2000 network (166,000 ha)
 - SAC (Habitat directive): 105,000 ha
 - SPA (Bird directive): 98,000 ha
Introduction

- EU member states have to report every 6 years on conservation status of Natura 2000 – Habitats
 - Range
 - Area
 - Habitat quality (Structure and functions)
 - Pressures and threats

- INBO is responsible for monitoring Natura 2000 habitats in Flanders (=~ Atlantic region of Belgium)
 - Habitat mapping → area and range
 - Monitoring scheme → habitat quality
Monitoring scheme habitat quality
What do we need to measure?

Information needs

- % habitat with favourable condition > 25%?

Indicators for habitat quality

- Key species
- Habitat structure
- Disturbances

Measurement variables

- Square plot: species composition and cover
- Circle plot: structure variables

Pictures: Ecopedia
Sample design

- Sample frame: Habitat map of Flanders
 + Covers all habitats/subtypes for the whole of Flanders
 + Update is ongoing
 - Many polygons are partially covered by habitat (but exact location within polygon is not known)

- Sample method: Generalized Random Tessellation Stratified (GRTS)
 - Stevens and Olsen (2004)
 - Spatially balanced sample

- Practical implementation
 - GRTS-package (Onkelinx, 2015)
 - ‘Master-sample’
 - 32m x 32m GRTS-sample covering Flanders
 - Each sample-point has a unique ranking
 - Separate sample for each habitat type
 - Not for rare habitats (< 10 hectares)
Sample design
Master GRTS-sample

Ranking master GRTS
- 0 - 500
- 500 - 1000
- 1000 - 1500
- 1500 - 2000
- 2000 - 2500
- 2500 - 3000
- 3000 - 3314
- Flanders
Sample design

Sample frame
Sample design

Overlay sample frame and master GRTS-sample

Ranking master GRTS

- 35 - 500
- 500 - 1000
- 1000 - 1500
- 1500 - 2000
- 2000 - 2500
- 2500 - 3000
- 3000 - 3300

Sample frame
Flanders
Sample design

Sample (n = 50): select 50 points with lowest ranking
Sample design

Sample (n = 50): select 50 points with lowest ranking
Sample design

Samples can easily be replaced in case of non-respons
Sample design

Samples can easily be replaced in case of non-respons based on ranking.
Sample design

Sample can easily be updated when sample frame changes
Sample design

Sample can easily be updated when sample frame changes
Sample design

Sample can easily be updated when sample frame changes
Sample design

Sample can easily be updated when sample frame changes
Sample design

Sample can easily be updated when sample frame changes.
Sample size

- Sample size calculations give insight in relationship between sample size and precision of estimated parameters.

- Choice of sample size is a policy decision.

- Precision levels
 - Sample size = 170 → Minimal detectable difference (Δ) = 10%
 - Sample size = 80 → Δ = 15%
 - Rule of thumb: Δ /2 → n x 4
 - If we want Δ = 5 % → n = 170 x 4 = 680
Sample size

- Choice of sample size
 - Habitattypes and subtypes (scale of Flanders) → n = 80
 - Habitattypes within Natura 2000 Network → Δ = 170 → oversample within Natura 2000 Network
 - Finite population correction factor → decrease sample size for habitats with smaller areas

- In total
 - Terrestrial habitats ≈ 4000 sampling units
 - Standing water bodies = 300 sampling units
 - Streams = 170 sampling units
Allocation of samples in time

<table>
<thead>
<tr>
<th>Year</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
<td>random subset n/4</td>
</tr>
<tr>
<td>4 - 6</td>
<td>random subset n/4</td>
</tr>
<tr>
<td>7 - 9</td>
<td>random subset n/4</td>
</tr>
<tr>
<td>10 - 12</td>
<td>random subset n/4</td>
</tr>
</tbody>
</table>
Implementation and experiences
Implementation

- Start in 2014
- First subset completed for most habitat types
- Analysis is ongoing for 2019 reporting
Experiences

- GRTS-method is a robust and flexible method
 - It can easily handle errors in sample frames
 - It can deal with dynamic sample frames

- Recommended for long-term monitoring