NATURA 2000 HABITAT IDENTIFICATION AND CONSERVATION  STATUS
ASSESSMENT WITH SUPERRESOLUTION ENHANCED HYPERSPECTRAL
(CHRIS/PROBA) IMAGERY

J. C.-W. Chaft*, T. Spanhové J. Ma® J. Vanden Borr& D. Paelinck®, F. Canteré

& Cartography and GIS Research Group, Departme@eofjraphy, Vrije Universiteit Brussel, Pleinlaarl250
Brussels, Belgium - (cheuchan, jianma, fcanters)@aaibe
P Research Institute for Nature and Forest (INBQinikstraat 25, 1070 Brussels, Belgium - (toonmsmeve,
jeroen.vandenborre, desire.paelinckx)@inbo.be

KEY WORDS: habitat mapping, vegetation mapping, Natura2000, GRbba, hyperspectral, superresolution, satéifiegery
ABSTRACT:

Monitoring and reporting on the status of Natur@®2®abitats is an obligation under the 1992 Habibitective for each member
state of the European Union (EU). Satellite imagergviding up-to-date information for a large arealverage could be an
interesting source to complement conventional, l&librious, field-driven surveying methods. Qualifyhabitats can be assessed
through their structures as represented by conibimabf various life forms. If these life forms cha classified by remote sensing,
then structural analysis can be applied and reddilyslated into useful information for conservatstatus assessment. Previous
experiences have shown that hyperspectral imaganpoie effective for detailed vegetation classifarathan multi-spectral images.
A limitation of spaceborne hyperspectral imageiguaver, is that the resolution is too coarse. Is study, we investigated the use
of superresolution (SR) enhanced CHRIS/Proba imageryhe derivation of a habitat map. To obtain timalf habitat map, two
strategies were compared. The first strategy ctiefsa direct classification of the habitats (abg¢ from the imagery. The second
strategy is an indirect classification approacmststing of two steps. First, a detailed classifoaof twenty-four vegetation types
was performed, while in the second step, the obthivegetation patches were subsequently mergedhatidat patches using
predefined rules. Kalmthoutse Heide, a nature vesir the North of Belgium dominated by heathlandswsed as a study area.
The tree-based ensemble classifier Random Forestiseasfor the classification, with its internal iaded Out-Of-Bag estimation
as a measure of accuracy assessment. While bategs achieve around 62% overall accuracy, tha distributions of various
habitats show large differences. Visual interpietatonfirms that the indirect classification apgeh, which aggregates detailed
vegetation patches into habitat patches, bettéctefa field mapping approach. A method to comliveestrengths of these two
strategies could provide more valuable resultdNfmiura 2000 habitat identification.

1. INTRODUCTION difficult to differentiate with conventional satiédl images, and
the low resolution may also be a problem.
1.1 Natura 2000 habitat mapping

) . . . . o 1.2 Hyperspectral data and superresolution enhancement
With the implementation of the Habitats Directivel992, EU

member states committed themselves to protect geraf  For detailed ecotope mapping, it has been shown rttuti-
highly threatened habitats within their territoBonitoring and  spectral classification only achieves limited aeoyr
reporting on the status of the Natura 2000 habitatsan  Hyperspectral data with richer spectral informatitlwever,
essential part of an effective conservation, andinaportant  are more effective (Chan and Paelinckx, 2008). Whilborne
obligation under the Habitats Directive: every spears, imagery can provide higher spatial resolutionss inuch more
member states have to report on the actual areaatige, the expensive and harder to obtain than satellite imyageo date,
quality and the future prospects for each habjtae t the only operational hyperspectral satellite is HPRPON.
Unfortunately, its spatial resolution of 30m is smtered too
To date, the gross of the data needed for thisrtiegoare  coarse for many applications. Another option is the
gathered through field mapping and the visual pretation of  demonstrator CHRIS/Proba, which is a transitional
aerial pictures. Such an approach does, howevee bame  hyperspectral-oriented satellite that operates @etw0.4-1 m
major drawbacks. First, these labour-intensive niples are  with 63 bands, at a spatial resolution of 36 mcdh acquire
highly expensive. Second, field mapping is oftemwsimaking  data at a higher spatial resolution, but at theemsp of the
it difficult to cover vast areas during the optims#ason of number of spectral bands. In Mode 3, it acquiresba8ds at
inventory. Third, despite the existence of strigles for field  18m. In terms of spatial resolution of hyperspédtmariented)
mapping, inter-observer errors are an issue (deye8s et al., imagery, this is the highest that can be obtaioedste. Next to
2004). that, CHRIS/Proba also allows multi-angular acquisitwhere
several images of the same scene are obtainednwathiery
Remote sensing techniques are often suggested asparp short period of time. Recent efforts to obtain aestgsolution
alternative for this monitoring. Clearly, the podiiiyp to cover  (SR) enhanced image from multi-view CHRIS images peed
large areas, the lower costs and the repeatabdepdatessing encouraging results with the SR images showing figitly
make these methods appealing. Unfortunately, sdijeets are  higher contrast and detail (Chan et al., 2008a; Céiaal.,
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2010). SR enhanced images used in land-cover dtadiih
are reportedly superior than the original image setich are
with a lower spatial resolution (Chan et al., 2008bgt al.,
2009). For applications that require a higher nesmh than the
current satellites can provide, the SR approachdctma an
interesting alternative.

1.3 Treating habitats as objects

In order to assess the conservation status ofdtapthe habitat
patches have to be identified first. Since the inah spatial

resolution of CHRIS is 18m, habitat patches that samaller

than this resolution will be lost. By applying SR @&ithms

using multi-view CHRIS images as input, a new imageas 9m
resolution can be simulated. Although the SR imag®ot be
treated as having the real 9m spatial resolutibmcorporates
useful information from multiple input images anau$ can
improve classification, especially at object bouiea where
mixed pixels are normally present. It is hoped tdh more

image detail and contrast, the SR image can impabject

(habitat) boundary delineation and hence will beareffective
in defining habitat patches.

There are various ways to arrive to the patch ldvet example,
object-based image analysis can be exploited tovezcthe
boundary of surface objects through multi-scalerssgation
(Mathieu et al., 2007), followed by a classificatiof these
objects. This approach has proven to be effectitie wvery high
spatial resolution satellite data such as Quicklaind lkonos
data and is particularly useful in complex envir@mts such as
urban areas. Natura 2000 habitats constitute aallgqur even
more complex environment, for a number of reasbmthe first
place, they are composed of a limited number ofidan plant
species, which occur in vegetation patches of wengll scale
(Fig. 1). Such vegetation elements can be venewdfft from
each other, yet together they constitute a largtipthat can be
assigned to a Natura 2000 habitat type. Moreovee t
composition of the vegetation elements in the ladlpiatch is an
important source of information for the conservatistatus
assessment status of the habitat. Unfortunatetyetts no 1-to-
1 relation between the vegetation elements andhdbéat type,
since the same type of vegetation element can gelon
different habitat types, depending on its spatw@htext. This
hampers straightforward habitat identification.

Such a high structural complexity would requirethigpatial
and spectral resolution imagery to be mapped adelyuaut to
date, this cannnot be delivered by satellite imag€herefore,
we experimented with two alternative approacheartive to
the object (habitat) level. As a first approach, agplied a
direct habitat classification on a satellite imagsing eight
habitat types as classes in the legend. In thisommh, we
assumed that the spectral signature of severakfft
vegetation elements would be mixed into the sigfizhe pixel,
leading to a possibly characteristic overall sp@ctignature for
each of the classes. As a drawback, this approatmaet

deliver any information on the constituting parfdtee habitat.
Our second approach involved a two-step indirediitaa
classification of the same image, starting with etailed
classification of twenty-four types of vegetatioterments,
followed by a rule-based approach to re-classifgsth
vegetation classes into habitat classes. In thigageh, we
expected to obtain more information on the compasiof

vegetation elements, and hence enable conservatatos
assessment, but possibly at the expense of a leelfebitat
patch identification. We used both classificatiartiaacy and

(b)

Figure 1. “Dry sand heaths witballuna and Genistd (2310)

is a Natura 2000 habitat commonly found in the ptaka. In
favourable conditions, it consists of a mixturedefarf scrub,
open sand and patches of pioneer grasses and nfaxsest as

a result of eutrophication, encroachment with pairpbor grass
(Molinia caeruled leads to a monotonous vegetation (b), with a
heavily reduced ecological value.

visual interpretation of the obtained maps to asaesl compare
the quality of habitat patch identification for hatpproaches.

2. METHODOLOGY
2.1 Superresolution enhancement of CHRIS/Proba

SR theories can be based on frequency or spatiaidout
those based on spatial domain provide better fiiyibin

modelling noise and degradation, and are moreldaifar our
purposes (Park et al., 2003). The idea of SR igtonstruct a
high resolution (HR) image through the use of sdviera

resolution (LR) images. The objective is to achi¢le best
image quality possible from several LR images. Havethe
application of SR algorithms is effective only iethR images
are sub-sampled, that means if aliases exist, artei LR

images include sub-pixel shifts. Superresolutiorthogs have
been applied to remote sensing images such as anadsl
Quickbird (Merino and Nufiez, 2007), as well as hgpectral
data (Akgun et al., 2005). The LR remote sensinggénaare
preferably acquired within a short period of time that the
occurrence of changes is minimized. As the angutages of
CHRIS/Proba (+55°, +36°, 0°, -36°, -55°) are acquinéthin
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minutes, they are ideally suited as input images $R
operations.

If we haveN LR images andY, is the matrix form of théth

LR image and X is the matrix form of the HR image, then

their relationship can be formulated as:

Y, = D B M, X+V, k=1,.,N (1)

where M is the warp matrix that represents the shift and
rotation of the LR imagedy is the blur matrix that represents

the blurring effects during the acquisition am} is the
subsampling or decimation factor. An ordered neigorV is
added at the end.

There are many approaches to conduct superresolirtiage
reconstruction (Park et al., 2003). In this papee, use the
intuitive iterative backprojection (IBP) proposed lmani and
Peleg (1991). IBP is based on a similar idea as atenaided
tomography, where a 2-D object is reconstructethfits 1-D

projections. The method involves a registrationcpture, an
iterative refinement for displacement estimationndaa
simulation of the imaging process (the blurringeefj using a
point spread function (PSF). The process starfsrbgiucing an
initial guess of the HR image. This initial HR imagean be
generated from one of the LR images by decimatiegpikels.
In the case of CHRIS/Proba, the nadir image set wed as the
first guess. The HR image is then down-samplednuilsite the
observed LR images using the motion estimation dodihg

component. The simulated LR images are subtracted the
observed LR images. If the initial HR image is thal ebserved
HR image, then the simulated LR images and the obddriR

images would be identical and their difference zérthey are
not identical, the computed differences can be Khzojected”

to improve the initial guess. The back-projectingpgess is
repeated iteratively to minimize the differenceswsen the

simulated and the observed LR images, and subséguen

produce a better HR image.

The iterative procedure can be described by
ln-'—l:ln'GBP(Hl(' _Y),
Y1 D,BM;
andH =
Yk DB M

whereY =

GBPrepresents the back-projection fiIterﬁn+1 is the

improved HR image at th@+1)th iteration, andln is the HR

Level 4 Class description Natura2000
Classcode habitat
Hdcy (13) YoungCalluna vulgaris  Callunaheath
Hdca (9) MatureCalluna vulgaris  Callunaheath
Hdco (0) OldCalluna vulgaris Callunaheath
Hdcm (52) Mixed-ag€alluna Callunaheath
Hwe- (52)  Erica tetralix Wet heath
Hgmd (107) Molinia caerulea(dry) Molinia heath
Hgmw (80) Molinia caerulea(wet) Molinia heath
Gpap (20) Species poor grassland (Agricultural)
Gpnd (22) Dry semi-natural Inland dunes
grassland
Gpj- (6) Juncus effusus Water bodies
Gpar (3) Species rich grassland (Agricultural)
Gt-- (5) Temporary grassland (Agricultural
Fcpc (3) Pinus nigra (Conif.forest)
Fcps (41) Pinus sylvestris (Conif.forest)
Fdb- (13) Betulaspp. Decid. forest
Fdgz (16) Quercus robur Decid. forest
Sh-- (20) Bare sand Inland dunes
Sfgm (14) Fixated sand Inland dunes
(grass+maoss)
Sfmc (4) Campylopus introflexus  Inland dunes
Sfmp (4) Polytrichum piliferum Inland dunes
Wov- (18) Water with vegetation Water bodieg
Wou- (16) Water without vegetation  Water bodies
Acm- (12) Maize field (Agricultural)
Aco- (4) Field with other crops (Agricultural)

Table 1. List of twenty-four vegetation classesl dne most
plausible corresponding Natura 2000 habitats (betvimackets
are land-cover types that do not constitute a ptete Natura
2000 habitat). The figures next to the Classcodeesgmt the
number of training samples.

level. The twenty-four vegetation classes were ufedthe
assessment of the conservation status in the habitehes, but
{or the habitat identification, eight “habitats” wediscerned
(Natura2000 code between bracketSallunadominated dry
heathland (2310 or 4030),
grasslands on inland dunes (233®lplinia-encroached heath
(degraded form of the habitats above), oligotrophiater
bodies (potentially 3110, 3130 or 3160), decidudagest
(potentially 9190), coniferous forest and otherdlaver types
(no habitats from the Habitats directive, includindan and
agricultural land). Although these habitats arepiresi by the
Habitats Directive, they do not completely corrasgrdMolinia-
encroached heath is a degraded form of heathlatidl lawv
ecological value that can originate from inland esias well as
from dry and wet heathland. However, the origimdifficult to
trace back. Also, ancillary data on soil type aridraielevation

image at thenth iteration. IBP is intuitive, hence it is easy to are necessary to separ&allunadominated heath on inland

understand. In this study the back-projection ffilteas
represented by a transpose of a PSF approximated oy 7
Gaussian filter.

2.2 Vegetation classes and habitat types

In order to test both approaches of habitat ideatibn, we
identified in the study area eight dominant habiyges and a
Level 4 classification scheme with twenty-four vegen
classes (Table 1). The vegetation was classifieskdan a
hierarchical classification scheme, i.e. startinghvsix broad
land-cover categories at the first level (heathlagihssland,
forest, inland dune, water body and arable fieldsut
comprising twenty-four detailed vegetation classethe fourth

dunes and on a podzol-like soil.

2.3 Study site

“Kalmthoutse Heide” and “Klein Schietveld” are twdatura
2000 sites in northern Belgium (51°22'N, 4°27’E) nheisting
mainly of dry and wet heathland habitat, inland ekjnwater
bodies and forests. Historically, heathlands weseduas
grazing grounds for livestock, and the organic topwas
regularly removed to be used as a fertiliser. Wille
intensification of agriculture, heathlands were rad@ned,
resulting in high levels of tree-encroachment. Astmnospheric
nitrogen depositions increase the encroachment puittple
moor grass Nlolinia caerulea)as well as the speed of inland

wet heathland (4010), nope
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SR enhanced CHRIS

Figure 2. A comparison of the original CHRIS imatmp) and
the SR CHRIS image (bottom), showing a lake in thedieidf
the Kalmthoutse Heide and its surroundings. Band<$ Ehd 2
are used.

extract from the original CHRIS nadir image and the S
enhanced CHRIS image. The original CHRIS has 18m $patia
resolution, while the SR CHRIS has 9m resolution. dimeunt

of image detail is substantially higher in the SRag® than in
the original image, and the boundaries of objeathsas lakes,
fields and off-road paths are more crisp.

N2000 habitat Direct Indirect
classification| classification

Calluna-heath 133.3 128.6
Wet heath 73.0 141.5
Molinia-heath 756.1 687.7
Agriculture 220.6 133.6

Inland dunes 108.0 215.3
Water bodies 109.9 160.8
Conif. forest 1113.6 864.4
Decid. forest 193.0 375.5

Table 3. Area estimates of habitat classes, itahes, obtained
with the two approaches.

3.2 Vegetation and habitat classification

We performed a supervised classification on the SHARIGH
image, with training samples acquired by a fielgphasx during
the summer of 2009. A total of 534 points were dachpsing a
stratified random sampling method, which took iatmount the
geographic distribution of each vegetation type. As
classification algorithm, we applied a decisionetrbased
ensemble classifier - Random Forest (Breiman, 20Random
Forest has proven to be one of the most robustaaadrate
machine learning classifiers. It is easy to usehvahly one
parameter to be tuned. For more details on theicatipin of
Random Forest for vegetation classification, werrédeChan
and Paelinckx (2008). Accuracy assessment was asing the
unbiased Out-Of-Bag (OOB) internal estimate of Random
Forest.

The first approach, where we classified the eighbitats
directly, revealed an OOB accuracy of 61.9%. In skeond
approach, the classification accuracy of the twéoty
vegetation classes was only 45.3%. Due to the pcesef hard-
to-distinguish classes at Level 4, even in thedfighis low
accuracy is not entirely unexpected. The classifinaat Level

dune fixation. Current nature management includesesh 4 was subsequently merged into the eight habieaisels using

grazing, sod cutting, tree removal and occasioralimg.

A CHRIS image set of the study site of excellent iyabas

the correspondence described in Table 1. After imgrgnto
eight habitat classes, the overall accuracy wase omgain
assessed, and now reached 62.4%. This is on gathweitdirect

acquired on % July 2008. The CHRIS image was Strategy.

atmospherically corrected and de-noised using theANBE
toolbox freely available through the
(http://lwww.brockmann-consult.de/cms/web/beam/).

3. RESULTS AND DISCUSSION
3.1 Superresolution enhancement of CHRIS imagery

As suggested by Chan et al. (2010), only the 0° a86°
images were used. High off-nadir images do not awprthe
result of the SR operation due to serious geoméistortion. A
registration routine described by Ma et al. (2018@s
implemented and the registration accuracy obtaimasl below
0.2 pixels. Visual inspection confirmed the highalify of the
registration process. The IBP SR method was appbed y-
band, and then the 18 bands were stacked. Fig.o®sslkan

ESA website Figure 3 shows the final habitat maps obtained it two

approaches, using all 534 samples as input. Whigzet is
general conformity between the two classificatiothey also
differ quite substantially. In general, very smglhtches
consisting of a few pixels are much less preserhénindirect
approach, which makes this map more like a fieldetr map.

A comparison of the habitat area obtained with th®
approaches is given in Table 3. There are big rdiffees in
derived habitat area for all habitats, exc€ptluna-dominated
and Molinia-encroached heathland. But even in these habitats,
minor shifts in the boundaries occur.

The area estimate of wet heathland in the diredsification is
almost half of the area calculated using the irdlimethod.
Most of the discrepancies occur in the border zooiesvet
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heathland andMolinia-heathland, and correspond with wet
heathlands that are heavily encroached by purpler rgeass
Molinia caerulea Subtle differences in estimating tMolinia
cover between fieldworkers and computer algorithmay
equally play a role (see also Micher et al. 208@hilarly, the
large differences in coverage of coniferous anddiews forest
types are mainly related to the presence of mireekt stands.

Conversely, large differences in the cover of inlatdne
habitat, water bodies and agricultural land areasgmtly not
related to the difficulty of classifying transitiorzones.
Misclassification of spectrally similar, but ecolcally very
different vegetation types and habitats are thenncause of
errors: some coniferous forests appear very darthersatellite
image, resulting in their classification as watAtso, inland
dunes can easily be confused with recently ploudtetdis. As
agricultural areas and forests were not targettatsbin this
study, relatively little training points were loedtin these areas,
and the high number of misclassifications are neally
surprising.

4. CONCLUSION

Superresolution enhancement of hyperspectral imagera
valuable tool for reducing the pixel size and tinseasing the
image contrast and spatial detail. For a CHRIS/Prdtallite
image of a heathland in Belgium, an SR image resoiutf 9m
was obtained, compared to 18m for the original iea8R
enhanced satellite images appear to be suitableh&bitat
mapping of heathlands: a direct and indirect cli@sdion
method both achieve classification accuraciesdpatoach the
accuracy of manual field mapping. Also, in genethé maps
produced with the two methods are largely compatrabhd
correspond well with the real distribution of thebitats.
However, the exact area estimates for each hatetated from
both maps strongly differ. This has been showneodated to
classification difficulties in  transition zones, tye
misclassification of spectrally similar vegetati@amd habitat
types also seems to play a role.

In the context of Natura 2000 monitoring, the resuf this
study are promising. First, for a large proportwthe study
area, both methods indicate the presence of the $whitat
type, which mostly corresponds with the actual tebiype
present. Second, although discrepancies betweetwthenaps
may be linked to real classification errors in afehe maps,
such differences may also indicate the presencgrafual
transition zones that cannot be easily classiflé: delineation
of such zones is very relevant for field manageis ecologists,
as these areas often correspond with rapidly evglzones that
need proper management.

We can conclude that the application of novel sigsedution
techniques, combined with multiple habitat classifion
approaches, can help to overcome the shortcomihgatellite
imagery and lead to satisfactory habitat map prodocThis is
a promising finding in the light of the development
operational methods for Natura 2000 habitat moimigprand
reporting, based on satellite imagery.
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