
NATURA 2000 HABITAT IDENTIFICATION AND CONSERVATION  STATUS 
ASSESSMENT WITH SUPERRESOLUTION ENHANCED HYPERSPECTRAL 

(CHRIS/PROBA) IMAGERY 
 
 

J. C.-W. Chan a, *, T. Spanhove b, J. Ma a, J. Vanden Borre b, D. Paelinckx b, F. Canters a 

 
a Cartography and GIS Research Group, Department of Geography, Vrije Universiteit Brussel, Pleinlaan 2, 1050 

Brussels, Belgium - (cheuchan, jianma, fcanters)@vub.ac.be 
b Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium - (toon.spanhove, 

jeroen.vandenborre, desire.paelinckx)@inbo.be 
 

 
KEY WORDS:  habitat mapping, vegetation mapping, Natura2000, CHRIS/Proba, hyperspectral, superresolution, satellite imagery  
 
ABSTRACT: 
 
Monitoring and reporting on the status of Natura 2000 habitats is an obligation under the 1992 Habitats Directive for each member 
state of the European Union (EU). Satellite imagery providing up-to-date information for a large areal coverage could be an 
interesting source to complement conventional, but laborious, field-driven surveying methods. Quality of habitats can be assessed 
through their structures as represented by combinations of various life forms. If these life forms can be classified by remote sensing, 
then structural analysis can be applied and readily translated into useful information for conservation status assessment. Previous 
experiences have shown that hyperspectral imagery is more effective for detailed vegetation classification than multi-spectral images. 
A limitation of spaceborne hyperspectral imagery, however, is that the resolution is too coarse. In this study, we investigated the use 
of superresolution (SR) enhanced CHRIS/Proba imagery for the derivation of a habitat map. To obtain the final habitat map, two 
strategies were compared. The first strategy consists of a direct classification of the habitats (objects) from the imagery. The second 
strategy is an indirect classification approach, consisting of two steps. First, a detailed classification of twenty-four vegetation types 
was performed, while in the second step, the obtained vegetation patches were subsequently merged into habitat patches using 
predefined rules. Kalmthoutse Heide, a nature reserve in the North of Belgium dominated by heathland, was used as a study area. 
The tree-based ensemble classifier Random Forest was used for the classification, with its internal unbiased Out-Of-Bag estimation 
as a measure of accuracy assessment. While both strategies achieve around 62% overall accuracy, the area distributions of various 
habitats show large differences. Visual interpretation confirms that the indirect classification approach, which aggregates detailed 
vegetation patches into habitat patches, better reflects a field mapping approach. A method to combine the strengths of these two 
strategies could provide more valuable results for Natura 2000 habitat identification.  
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Natura 2000 habitat mapping 

With the implementation of the Habitats Directive in 1992, EU 
member states committed themselves to protect a range of 
highly threatened habitats within their territory. Monitoring and 
reporting on the status of the Natura 2000 habitats is an 
essential part of an effective conservation, and an important 
obligation under the Habitats Directive: every six years, 
member states have to report on the actual area, the range, the 
quality and the future prospects for each habitat type. 
 
To date, the gross of the data needed for this reporting are 
gathered through field mapping and the visual interpretation of 
aerial pictures. Such an approach does, however, have some 
major drawbacks. First, these labour-intensive techniques are 
highly expensive. Second, field mapping is often slow, making 
it difficult to cover vast areas during the optimal season of 
inventory. Third, despite the existence of strict rules for field 
mapping, inter-observer errors are an issue (e.g. Stevens et al., 
2004). 
 
Remote sensing techniques are often suggested as a proper 
alternative for this monitoring. Clearly, the possibility to cover 
large areas, the lower costs and the repeatable data processing 
make these methods appealing. Unfortunately, some objects are 

difficult to differentiate with conventional satellite images, and 
the low resolution may also be a problem. 
 
1.2 Hyperspectral data and superresolution enhancement 

For detailed ecotope mapping, it has been shown that multi-
spectral classification only achieves limited accuracy. 
Hyperspectral data with richer spectral information, however, 
are more effective (Chan and Paelinckx, 2008). While airborne 
imagery can provide higher spatial resolutions, it is much more 
expensive and harder to obtain than satellite imagery. To date, 
the only operational hyperspectral satellite is HYPERION. 
Unfortunately, its spatial resolution of 30m is considered too 
coarse for many applications. Another option is the 
demonstrator CHRIS/Proba, which is a transitional 
hyperspectral-oriented satellite that operates between 0.4-1 � m 
with 63 bands, at a spatial resolution of 36 m. It can acquire 
data at a higher spatial resolution, but at the expense of the 
number of spectral bands. In Mode 3, it acquires 18 bands at 
18m. In terms of spatial resolution of hyperspectral (-oriented) 
imagery, this is the highest that can be obtained to date. Next to 
that, CHRIS/Proba also allows multi-angular acquisition where 
several images of the same scene are obtained within a very 
short period of time. Recent efforts to obtain a superresolution 
(SR) enhanced image from multi-view CHRIS images produced 
encouraging results with the SR images showing significantly 
higher contrast and detail (Chan et al., 2008a; Chan et al., 
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2010). SR enhanced images used in land-cover classification 
are reportedly superior than the original image sets which are 
with a lower spatial resolution (Chan et al., 2008b; Li et al., 
2009). For applications that require a higher resolution than the 
current satellites can provide, the SR approach could be an 
interesting alternative. 
 
1.3 Treating habitats as objects 

In order to assess the conservation status of habitats, the habitat 
patches have to be identified first. Since the original spatial 
resolution of CHRIS is 18m, habitat patches that are smaller 
than this resolution will be lost. By applying SR algorithms 
using multi-view CHRIS images as input, a new image set at 9m 
resolution can be simulated. Although the SR image cannot be 
treated as having the real 9m spatial resolution, it incorporates 
useful information from multiple input images and thus can 
improve classification, especially at object boundaries where 
mixed pixels are normally present. It is hoped that with more 
image detail and contrast, the SR image can improve object 
(habitat) boundary delineation and hence will be more effective 
in defining habitat patches. 
 
There are various ways to arrive to the patch level. For example, 
object-based image analysis can be exploited to recover the 
boundary of surface objects through multi-scale segmentation 
(Mathieu et al., 2007), followed by a classification of these 
objects. This approach has proven to be effective with very high 
spatial resolution satellite data such as Quickbird and Ikonos 
data and is particularly useful in complex environments such as 
urban areas. Natura 2000 habitats constitute an equally or even 
more complex environment, for a number of reasons. In the first 
place, they are composed of a limited number of dominant plant 
species, which occur in vegetation patches of very small scale 
(Fig. 1). Such vegetation elements can be very different from 
each other, yet together they constitute a larger patch that can be 
assigned to a Natura 2000 habitat type. Moreover, the 
composition of the vegetation elements in the habitat patch is an 
important source of information for the conservation status 
assessment status of the habitat. Unfortunately, there is no 1-to-
1 relation between the vegetation elements and the habitat type, 
since the same type of vegetation element can belong to 
different habitat types, depending on its spatial context. This 
hampers straightforward habitat identification.  
 
Such a high structural complexity would require high spatial 
and spectral resolution imagery to be mapped adequately, but to 
date, this cannnot be delivered by satellite imagery. Therefore, 
we experimented with two alternative approaches to arrive to 
the object (habitat) level. As a first approach, we applied a 
direct habitat classification on a satellite image, using eight 
habitat types as classes in the legend. In this approach, we 
assumed that the spectral signature of several different 
vegetation elements would be mixed into the signal of the pixel, 
leading to a possibly characteristic overall spectral signature for 
each of the classes. As a drawback, this approach will not 
deliver any information on the constituting parts of the habitat. 
Our second approach involved a two-step indirect habitat 
classification of the same image, starting with a detailed 
classification of twenty-four types of vegetation elements, 
followed by a rule-based approach to re-classify these 
vegetation classes into habitat classes. In this approach, we 
expected to obtain more information on the composition of 
vegetation elements, and hence enable conservation status 
assessment, but possibly at the expense of a reliable habitat 
patch identification. We used both classification accuracy and    

  
(a) 

 
(b) 

 
Figure 1.  “Dry sand heaths with Calluna and Genista” (2310) 
is a Natura 2000 habitat commonly found in the study area. In 
favourable conditions, it consists of a mixture of dwarf scrub, 
open sand and patches of pioneer grasses and mosses (a); but as 
a result of eutrophication, encroachment with purple moor grass 
(Molinia caerulea) leads to a monotonous vegetation (b), with a 
heavily reduced ecological value. 
 
visual interpretation of the obtained maps to assess and compare 
the quality of habitat patch identification for both approaches. 
 
 
 

2. METHODOLOGY 

2.1 Superresolution enhancement of CHRIS/Proba 

SR theories can be based on frequency or spatial domain, but 
those based on spatial domain provide better flexibility in 
modelling noise and degradation, and are more suitable for our 
purposes (Park et al., 2003). The idea of SR is to reconstruct a 
high resolution (HR) image through the use of several low 
resolution (LR) images. The objective is to achieve the best 
image quality possible from several LR images. However, the 
application of SR algorithms is effective only if the LR images 
are sub-sampled, that means if aliases exist, and if the LR 
images include sub-pixel shifts. Superresolution methods have 
been applied to remote sensing images such as Landsat and 
Quickbird (Merino and Núñez, 2007), as well as hyperspectral 
data (Akgun et al., 2005). The LR remote sensing images are 
preferably acquired within a short period of time so that the 
occurrence of changes is minimized. As the angular images of 
CHRIS/Proba (+55°, +36°, 0°, -36°, -55°) are acquired within 
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minutes, they are ideally suited as input images for SR 
operations. 
 
If we have N  LR images and kY is the matrix form of the kth 

LR image and X  is the matrix form of the HR image, then 

their relationship can be formulated as: 
 

k k kk kY D B M X V= +   k = 1,…, N         (1) 

 
where Mk is the warp matrix that represents the shift and 
rotation of the LR images, Bk is the blur matrix that represents 
the blurring effects during the acquisition and Dk is the 
subsampling or decimation factor. An ordered noise vector Vk is 
added at the end.  
 
There are many approaches to conduct superresolution image 
reconstruction (Park et al., 2003). In this paper, we use the 
intuitive iterative backprojection (IBP) proposed in Irani and 
Peleg (1991). IBP is based on a similar idea as computer-aided 
tomography, where a 2-D object is reconstructed from its 1-D 
projections. The method involves a registration procedure, an 
iterative refinement for displacement estimation, and a 
simulation of the imaging process (the blurring effect) using a 
point spread function (PSF). The process starts by producing an 
initial guess of the HR image. This initial HR image can be 
generated from one of the LR images by decimating the pixels. 
In the case of CHRIS/Proba, the nadir image set was used as the 
first guess. The HR image is then down-sampled to simulate the 
observed LR images using the motion estimation and blurring 
component. The simulated LR images are subtracted from the 
observed LR images. If the initial HR image is the real observed 
HR image, then the simulated LR images and the observed LR 
images would be identical and their difference zero. If they are 
not identical, the computed differences can be “back-projected” 
to improve the initial guess. The back-projecting process is 
repeated iteratively to minimize the differences between the 
simulated and the observed LR images, and subsequently 
produce a better HR image. 
 
The iterative procedure can be described by 
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BPG represents the back-projection filter, 1nX +  is the 

improved HR image at the (n+1)th iteration, and nX is the HR 

image at the nth iteration. IBP is intuitive, hence it is easy to 
understand. In this study the back-projection filter was 
represented by a transpose of a PSF approximated by a 7 x 7 
Gaussian filter. 
 
2.2 Vegetation classes and habitat types 

In order to test both approaches of habitat identification, we 
identified in the study area eight dominant habitat types and a 
Level 4 classification scheme with twenty-four vegetation 
classes (Table 1). The vegetation was classified based on a 
hierarchical classification scheme, i.e. starting with six broad 
land-cover categories at the first level (heathland, grassland, 
forest, inland dune, water body and arable fields), but 
comprising twenty-four detailed vegetation classes at the fourth  

Level 4  
Classcode 

Class description Natura2000 
habitat  

Hdcy (13) Young Calluna vulgaris Calluna heath 
Hdca (9) Mature Calluna vulgaris Calluna heath 
Hdco (0) Old Calluna vulgaris Calluna heath 
Hdcm (52) Mixed-age Calluna Calluna heath 
Hwe- (52) Erica tetralix Wet heath 
Hgmd (107) Molinia caerulea (dry) Molinia heath 
Hgmw (80) Molinia caerulea (wet) Molinia heath 
Gpap (20) Species poor grassland (Agricultural) 
Gpnd (22) Dry semi-natural 

grassland 
Inland dunes 

Gpj- (6) Juncus effusus Water bodies 
Gpar (3) Species rich grassland (Agricultural) 
Gt-- (5) Temporary grassland (Agricultural) 
Fcpc (3) Pinus nigra (Conif.forest) 
Fcps (41) Pinus sylvestris (Conif.forest) 
Fdb- (13) Betula spp. Decid. forest 
Fdqz (16) Quercus robur Decid. forest 
Sb-- (20) Bare sand Inland dunes 
Sfgm (14) Fixated sand 

(grass+moss) 
Inland dunes 

Sfmc (4) Campylopus introflexus Inland dunes 
Sfmp (4) Polytrichum piliferum Inland dunes 
Wov- (18) Water with vegetation Water bodies 
Wou- (16) Water without vegetation Water bodies 
Acm- (12) Maize field (Agricultural) 
Aco- (4) Field with other crops (Agricultural) 

 
Table 1.  List of twenty-four vegetation classes and the most 
plausible corresponding Natura 2000 habitats (between brackets 
are land-cover types that do not constitute a protected Natura 
2000 habitat). The figures next to the Classcode represent the 
number of training samples. 
 
level. The twenty-four vegetation classes were used for the 
assessment of the conservation status in the habitat patches, but 
for the habitat identification, eight “habitats” were discerned 
(Natura2000 code between brackets): Calluna-dominated dry 
heathland (2310 or 4030), wet heathland (4010), open 
grasslands on inland dunes (2330), Molinia-encroached heath 
(degraded form of the habitats above), oligotrophic water 
bodies (potentially 3110, 3130 or 3160), deciduous forest 
(potentially 9190), coniferous forest and other land cover types 
(no habitats from the Habitats directive, including urban and 
agricultural land). Although these habitats are inspired by the 
Habitats Directive, they do not completely correspond: Molinia-
encroached heath is a degraded form of heathland with low 
ecological value that can originate from inland dunes as well as 
from dry and wet heathland. However, the origin is difficult to 
trace back. Also, ancillary data on soil type and micro-elevation 
are necessary to separate Calluna-dominated heath on inland 
dunes and on a podzol-like soil. 
 
2.3 Study site 

“Kalmthoutse Heide” and “Klein Schietveld” are two Natura 
2000 sites in northern Belgium (51°22’N, 4°27’E), consisting 
mainly of dry and wet heathland habitat, inland dunes, water 
bodies and forests. Historically, heathlands were used as 
grazing grounds for livestock, and the organic topsoil was 
regularly removed to be used as a fertiliser. With the 
intensification of agriculture, heathlands were abandoned, 
resulting in high levels of tree-encroachment. Also, atmospheric 
nitrogen depositions increase the encroachment with purple 
moor grass (Molinia caerulea) as well as the speed of inland  
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Original CHRIS 

 
SR enhanced CHRIS 

 
Figure 2.  A comparison of the original CHRIS image (top) and 
the SR CHRIS image (bottom), showing a lake in the middle of 
the Kalmthoutse Heide and its surroundings. Bands 13, 5 and 2 
are used. 
 
dune fixation. Current nature management includes sheep 
grazing, sod cutting, tree removal and occasional mowing. 
 
A CHRIS image set of the study site of excellent quality was 
acquired on 1st July 2008. The CHRIS image was 
atmospherically corrected and de-noised using the BEAM 
toolbox freely available through the ESA website 
(http://www.brockmann-consult.de/cms/web/beam/).  
 

3. RESULTS AND DISCUSSION 

3.1 Superresolution enhancement of CHRIS imagery 

As suggested by Chan et al. (2010), only the 0° and ±36° 
images were used. High off-nadir images do not improve the 
result of the SR operation due to serious geometric distortion. A 
registration routine described by Ma et al. (2010) was 
implemented and the registration accuracy obtained was below 
0.2 pixels. Visual inspection confirmed the high quality of the 
registration process. The IBP SR method was applied band-by-
band, and then the 18 bands were stacked. Fig. 2 shows an 

extract from the original CHRIS nadir image and the SR 
enhanced CHRIS image. The original CHRIS has 18m spatial 
resolution, while the SR CHRIS has 9m resolution. The amount 
of image detail is substantially higher in the SR image than in 
the original image, and the boundaries of objects such as lakes, 
fields and off-road paths are more crisp. 
 

N2000 habitat Direct 
classification 

Indirect 
classification 

Calluna-heath 133.3 128.6 
Wet heath 73.0 141.5 
Molinia-heath 756.1 687.7 
Agriculture 220.6 133.6 
Inland dunes 108.0 215.3 
Water bodies 109.9 160.8 
Conif. forest 1113.6 864.4 
Decid. forest 193.0 375.5 

 
Table 3.  Area estimates of habitat classes, in hectares, obtained 
with the two approaches.  
 
3.2 Vegetation and habitat classification 

We performed a supervised classification on the SR CHRIS 
image, with training samples acquired by a field expert during 
the summer of 2009. A total of 534 points were sampled using a 
stratified random sampling method, which took into account the 
geographic distribution of each vegetation type. As a 
classification algorithm, we applied a decision tree based 
ensemble classifier - Random Forest (Breiman, 2001). Random 
Forest has proven to be one of the most robust and accurate 
machine learning classifiers. It is easy to use with only one 
parameter to be tuned. For more details on the application of 
Random Forest for vegetation classification, we refer to Chan 
and Paelinckx (2008). Accuracy assessment was done using the 
unbiased Out-Of-Bag (OOB) internal estimate of Random 
Forest. 
 
The first approach, where we classified the eight habitats 
directly, revealed an OOB accuracy of 61.9%. In the second 
approach, the classification accuracy of the twenty-four 
vegetation classes was only 45.3%. Due to the presence of hard-
to-distinguish classes at Level 4, even in the field, this low 
accuracy is not entirely unexpected. The classification at Level 
4 was subsequently merged into the eight habitat classes using 
the correspondence described in Table 1. After merging into 
eight habitat classes, the overall accuracy was once again 
assessed, and now reached 62.4%. This is on par with the direct 
strategy. 
 
Figure 3 shows the final habitat maps obtained with the two 
approaches, using all 534 samples as input. While there is 
general conformity between the two classifications, they also 
differ quite substantially. In general, very small patches 
consisting of a few pixels are much less present in the indirect 
approach, which makes this map more like a field-driven map. 
A comparison of the habitat area obtained with the two 
approaches is given in Table 3. There are big differences in 
derived habitat area for all habitats, except Calluna-dominated 
and Molinia-encroached heathland. But even in these habitats, 
minor shifts in the boundaries occur. 
 
The area estimate of wet heathland in the direct classification is 
almost half of the area calculated using the indirect method. 
Most of the discrepancies occur in the border zones of wet 
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heathland and Molinia-heathland, and correspond with wet 
heathlands that are heavily encroached by purple moor grass 
Molinia caerulea. Subtle differences in estimating the Molinia 
cover between fieldworkers and computer algorithms may 
equally play a role (see also Mücher et al. 2010). Similarly, the 
large differences in coverage of coniferous and deciduous forest 
types are mainly related to the presence of mixed forest stands. 
 
Conversely, large differences in the cover of inland dune 
habitat, water bodies and agricultural land are apparently not 
related to the difficulty of classifying transition zones. 
Misclassification of spectrally similar, but ecologically very 
different vegetation types and habitats are the main cause of 
errors: some coniferous forests appear very dark on the satellite 
image, resulting in their classification as water. Also, inland 
dunes can easily be confused with recently ploughed fields. As 
agricultural areas and forests were not target habitats in this 
study, relatively little training points were located in these areas, 
and the high number of misclassifications are not really 
surprising. 
 

4. CONCLUSION 

Superresolution enhancement of hyperspectral imagery is a 
valuable tool for reducing the pixel size and thus increasing the 
image contrast and spatial detail. For a CHRIS/Proba satellite 
image of a heathland in Belgium, an SR image resolution of 9m 
was obtained, compared to 18m for the original image. SR 
enhanced satellite images appear to be suitable for habitat 
mapping of heathlands: a direct and indirect classification 
method both achieve classification accuracies that approach the 
accuracy of manual field mapping. Also, in general, the maps 
produced with the two methods are largely comparable, and 
correspond well with the real distribution of the habitats. 
However, the exact area estimates for each habitat derived from 
both maps strongly differ. This has been shown to be related to 
classification difficulties in transition zones, yet 
misclassification of spectrally similar vegetation and habitat 
types also seems to play a role. 
 
In the context of Natura 2000 monitoring, the results of this 
study are promising. First, for a large proportion of the study 
area, both methods indicate the presence of the same habitat 
type, which mostly corresponds with the actual habitat type 
present. Second, although discrepancies between the two maps 
may be linked to real classification errors in one of the maps, 
such differences may also indicate the presence of gradual 
transition zones that cannot be easily classified. The delineation 
of such zones is very relevant for field managers and ecologists, 
as these areas often correspond with rapidly evolving zones that 
need proper management. 
 
We can conclude that the application of novel superresolution 
techniques, combined with multiple habitat classification 
approaches, can help to overcome the shortcomings of satellite 
imagery and lead to satisfactory habitat map production. This is 
a promising finding in the light of the development of 
operational methods for Natura 2000 habitat monitoring and 
reporting, based on satellite imagery. 
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