Advies van het Instituut voor Natuur- en Bosonderzoek
INBO.A.2008.206

Mogelijke grondwater- en ecologische effecten bij de aanvraag hernieuwing milieuvergunning voor een grondwaterwinning van het golfsterrein aan Ten Haagdoornheide voor de Limburg Golf en Country Club (LGCC)
Vanuit ANB buitendienst Limburg werden een aantal concrete vragen aan het INBO gesteld:

- Op welke wijze kunnen de grondwatereffecten en reductie van debieten in beeld gebracht worden (aan welke voorwaarden dient een eventueel grondwatermodel te voldoen, welke informatie kan ter beschikking gesteld worden vanuit de WATINA databank?)
- Op welke wijze dienen grondwatereffecten doorvertaald te worden naar ecologische effecten (gelet op voorkomende habitatypen. Welke verlaging van de grondwaterstand is aanvaardbaar?)
- Welke bemestingsnormen dienen gehanteerd te worden om geen impact van eutrofiëring te veroorzaken op het grondwatersysteem?

Geohydrologische situatie
In 2002 werd in opdracht van de toenmalige Afdeling Natuur (Technum 2002) een basisversie opgemaakt van een regionaal grondwaterstromingsmodel voor het gebied van Tenhaagdoornheide en Teut. Dat was een steady state model in Modflow. Er werd gebruik gemaakt van alle destijds beschikbare geologische en grondwaterpeilgegevens in dat studiegebied. Voor het grootste deel werden er dan originele peilgegevens verzameld maar die werden slechts gedeeltelijk verwerkt in het model. De calibratie van het model was eerder rudimentair. Uit de calibratie- en verificatiecurves (pg 39 & 40) valt af te leiden dat er gewerkt werd met een model met foutenmarges binnen het studiegebied van 0.6 tot 2 meter, wat niet onaanvaardelijk is. Desalniettemin is men er toen in geslaagd om kwel en infiltratiezones in beeld te brengen, grondwaterstroomrichting en stroombanen te visualiseren. Er kon toen ook worden vastgesteld dat de toenmalige winning van LGCC een significant negatief effect had op de hydrologie van dit SBZ gebied. Op pg 45 wordt het volgende geconcludeerd: "wanneer het infiltratiegebied, gerelateerd aan de kwelzone ter hoogte van meetraal 2, berekend wordt, kan worden waargenomen dat de grondwateronttrekking van het golf terrein in deze stroombaan voorkomt. Vermoedelijk wordt het "toekomstige" kwelwater, dat ter hoogte van het Kempisch plateau infiltreert, grotendeels opgepompt, waardoor enkel regenwater dat infiltrerende op de flanken van de beekvallei terug opkweekt. Over een significante grondwaterstanddaling als gevolg van de LGCC winning worden er geen uitspraken gedaan omdat het in de studie aan referentiebeelden ontbrak. De winning van LGCC is gelegen in het infiltratiegebied van het grondwater dat uittreed in de kwelzone van de Huttebeek en de Laambeek net stroomafwaarts van de samenvloeiing met de Huttebeek. Het grondwaterstroomgebied lijkt vrij klein te zijn, het infiltrerende regenwater stroomt door de zanden van de formatie van Diest die ter hoogte van de golf slechts een tiental meter dik zou zijn en ligt boven op een veel dikker afzettings met zanden van de formatie van Bolderberg. Welde zijn miscro afzettingen gekenmerkt door respectievelijk glauconiethoudende zanden en een afwisseling van glauconiethoudende zanden en klei. Ter hoogte van de winning van LGCC gaat het voornamelijk over glauconiethoudend zand met een hydraulische conductiviteit van 0.8 m/dag voor het bovenste watervervloeiende pakket (formatie van Diest), hoger dus dan de onderliggende formatie van Bolderberg (K~0.2 m/dag). Aan de randen van de valleien van de Huttenbeek en de Laambeek komen grote hoeveelheden ijzerroze kwelwater aan de oppervlakte voornamelijk aan de noordzijde van de vallei, en in veel mindere mate aan de zuidzijde. In de studie (Technum 2000) wordt aangetoond dat dit te wijten zou kunnen zijn aan de grondwateronttrekking aldaar.

Bovendien werd toen de grondwaterwinning van LGCC in het model ingebracht als een constant onttrokken debiet (op basis van het vergunde jaardebet evenredig uitgespreid over alle dagen van het jaar). Toen werd een negatieve impact vastgesteld op de vegetaties in de naastliggende beekvallei. In realiteit wordt er slechts gedurende 7 maanden onttrokken (periode maart-april tot september-oktober) (LGCC 2008).

Bijgevolg betekent dit veel hogere piekverbruiken in een periode die cruciaal is voor grondwaterafhankelijke vegetatietypen in de omgeving.
Er dient met andere woorden erg voorzichtig te worden omgegaan met het verlenen van vergunningen voor substantiële grondwateronttrekking in dit gevoelige gebied.

Waarom is dit een gevoelig gebied – wat kunnen de grondwaterafhankelijke vegetatietyper verdragen?

Niet zozeer het golfterrein en de direct aanpalende terreinen dienen als gevoelig beschouwd te worden maar wel de noordelijk en noordwestelijk gelegen valleien van de Huttebeek en de Laambeek, omdat die terreingedeelten onder invloed staan van uittredend grondwater (kwelzones) waardoor er oligotrofe elzenberkenbroeken en vochtige tot venige heide voorkomt. Dat zijn vegetatietypen die een vrij constante grondwatertafel vereisen, gedurende het gehele jaar in de buurt van het maaiveld en bovendien met vrij weinig schommelingen op jaarbasis (zie verder).

In onderstaande tabel zijn waarden te vinden voor gemiddelde laagste grondwaterstand (GLG in m t.o.v. maaiveld) en grondwatertafelschommeling op jaarbasis (Amplitude in meter) voor de grondwaterafhankelijke vegetatietypen in de valleien van de Huttebeek en Laambeek. De cijfers komen uit diverse ecohydrologische INBO-studies (zie o.a. Callebaut et al. 2007; De Becker et al. 2004). Niet al deze typen komen voor in de studie van Technum, maar zijn in realiteit wel aan te treffen, al dan niet in slechte staat van instandhouding. Het gaat meer bepaald om oligotroof elzenberken broek (habitatcode 9150), kleine zeggevegetaties (habitatcode 7140) mesotroof elzenbroek (habitatcode 9150) en vochtige en venige heide (habitatcode 4010)

<table>
<thead>
<tr>
<th>Vegetatiotype</th>
<th>Amplitude</th>
<th>GLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elzen-Berkenbroek</td>
<td>0.25/0.30/0.45</td>
<td>-0.2/0.3/0.4</td>
</tr>
<tr>
<td>Kleine zeggevegetaties</td>
<td>0.3/0.4/0.45</td>
<td>-0.35/-0.25/-0.15</td>
</tr>
<tr>
<td>Mesotroof Elzenbroekbos</td>
<td>0.3/0.55/0.7</td>
<td>-0.05/-0.3/-0.4</td>
</tr>
<tr>
<td>Vochtige heide</td>
<td>0.8/1.2</td>
<td>-0.8/-1</td>
</tr>
<tr>
<td>Venige heide</td>
<td>0.3/0.4</td>
<td>-0.25/-0.35</td>
</tr>
</tbody>
</table>

Dit zijn stuk voor stuk vegetatietypen die zeer gevoelig zijn voor grondwaterstanddaling. Vooral de Elzen-Berkenbroeken, de kleine zeggevegetaties en de venige heide verdragen zo goed als geen veranderingen in het hydrologische regime. Als er van uitgegaan wordt dat de typen optimaal ontwikkeld zijn dan kan een daling van het grondwaterpeil van 5-10 cm van de GLG al nefast zijn voor het voortbestaan van deze typen. Het mesotroof elzenbroekbos en de vochtige heide kunnen iets meer verdragen maar meer dan 20 centimeter daling van de GLG mag dat niet zijn.

Op welke wijze kunnen grondwater-effecten in beeld gebracht worden?

Een regionaal grondwaterstromingsmodel maken dat goede calibratieresultaten heeft (met fouten tussen gemeten en gemedelde waarden van een paar tientallen centimeters) is tegenwoordig een standaardopdracht die door tal van bureaus en instellingen tot een goed einde gebracht wordt. Erg belangrijk daarbij zijn het gebruik van goede geohydrologische modelassumptions (i.e. geologische profielbeschrijvingen en hydraulische parameters), maar zeker ook een gedetailleerde topografie en het gebruik van lange tijdreeksen van grondwaterpeilmetingen in het gebied voor de calibratie en verificatie van het model. Dat is destijds bij de opmaak van het grondwatermodel niet gebeurd. Er werden wel goede geohydrologische assumpties gemaakt maar van gedigitaliseerde hoogtelijnen op de topografische kaarten van het NGI. Vandaag zijn er gedetailleerde Digitale Hoogte Modellen beschikbaar voor gans Vlaanderen. Bovendien zijn er heel wat meer grondwaterpeilmetingen beschikbaar zodat calibratie en verificatie veel beter moeten kunnen. Er kan gewerkt worden met transient modellen of met steady state die bijvoorbeeld een gemiddelde zomersituatie modelleert. Die zomersituatie kan
veel nuttige informatie opleveren voor de impact van een grondwateronttrekking op de GLG en de daaraan gekoppelde vegetatietypen.

Eenmaal een goed gekalibreerd model is het mogelijk om de effecten van een grondwaterwinning (incl. pompkegel en veroorzaakte grondwaterstandverlaging ter hoogte van de kwelzones en de valleien in beeld te brengen en bijgevolg ook de effecten op de verschillende grondwaterafhankelijke vegetatietypen.

welke informatie kan ter beschikking gesteld worden vanuit de WATINA databank?

Welke bemestingsnormen dienen gehanteerd te worden om geen impact van eutrofiëring te hebben op het grondwatersysteem?
Het is niet mogelijk gebleken om binnen het voorziene tijdsbestek een sluitend antwoord op deze vraag te geven.

Bedenkingen

- In de passende beoordeling (ANB 2007)is er op pg 11 sprake van het voorkomen van berkenbroekbos in de Huttebeek. Ik kan met aan zekerheid grenzende waarschijnlijkheid zeggen dat het berkenbroekbos (habitatcode 91D0k) daar niet voorkomt. Meer dan waarschijnlijk komt dat type nergens voor in Vlaanderen. Zeker hier, maar vermoedelijk ook elders in Vlaanderen, gaat het om oligotroof elzenberkenbroek, een onderdeel van het habitattype 91E0's. In de Huttebeek gaat het om grondwaterafhankelijke valleibossen (91F0) en zeker geen bossen in of aan de randen van hoogveen of gedegradeerde hoogveengeesten (91D0).
- De LGCC kreeg vroeger een vergunning voor 80000 m³/j, die vergunning loopt in juni 2009 af. Nu wordt een hervergunning aangevraagd voor 60000 m³/j. In de historisch droge zomer van 2003 werd er 55000 m³ opgepompt. Toch wordt er 60000 m³ aangevraagd. Het Vlaamse waterbeleid stuurt aan op duurzaam gebruik van grondwater en gebruik van regenwater bij (landbouw-)bedrijven en privéwoningen. Is het dan niet logisch om een maximum te winnen debiet toe te kennen dat lager ligt dan het piekverbruik in een uitzonderlijk droge zomer alleen al om een aanzet te geven om besparring te werken met deze schaarse grondstof? Binnen de site van de golf moeten er toch mogelijkheden zijn om regenwater te hergebruiken

Referentie

Instituut voor Natuurbiood: Brussel

LGCC vzw Limburg Golf 8 nota 081037 - 9pp. + bijlagen

Technum 2008. Het verkrijgen van Hydro-ecologisch inzicht in de natte gebieden van de
Vlaamse natuurrreservaten Teut en Tenhaagdoornheide – eindrapport oktober 2008. 240
pp + bijlagen.

Hoogachtend,

[Signature]

Dr. Jurgen Tack
Administrateur-generaal